The absolutely optimal way is to use a priority queue, in the following way:
PriorityQueue<Float> q = new PriorityQueue<Float>();
for(float x : list) q.add(x);
while(q.size() > 1) q.add(q.pop() + q.pop());
return q.pop();
(this code assumes the numbers are positive; generally the queue should be ordered by absolute value)
Explanation: given a list of numbers, to add them up as precisely as possible you should strive to make the numbers close, t.i. eliminate the difference between small and big ones. That's why you want to add up the two smallest numbers, thus increasing the minimal value of the list, decreasing the difference between the minimum and maximum in the list and reducing the problem size by 1.
Unfortunately I have no idea about how this can be vectorized, considering that you're using OpenCL. But I am almost sure that it can be. You might take a look at the book on vector algorithms, it is surprising how powerful they actually are: Vector Models for Data-Parallel Computing