In C++, the difference between a struct and a class is the default visibility of its contents (i.e. public for a struct, and private for a class). I guess this difference was to keep C compatibility.
But semantically, I guess this is subject to interpretation.
An example of struct
In a struct, everything is public (by default), meaning the user can modify each data value as desired, and still the struct remains a valid object. Example of struct:
struct CPoint
{
int x ;
int y ;
CPoint() : x(0), y(0) {}
int getDistanceFromOrigin() const
{
return std::sqrt(x * x + y * y) ;
}
} ;
inline CPoint operator + (const CPoint & lhs, const CPoint & rhs)
{
CPoint r(lhs) ;
r.x += rhs.x ;
r.y += rhs.y ;
return r ;
}
You can change the x value of a CPoint, and it still remains a valid CPoint.
Note that, unlike some believe, a C++ struct can (and should) have constructors, methods and non-member functions attached to its interface, as shown above.
An example of class
In a class, everything is private (by default), meaning the user can modify the data only through a well defined interface, because the class must keep its internals valid. Example of class:
class CString
{
public :
CString(const char * p) { /* etc. */ } ;
CString(const CString & p) { /* etc. */ } ;
const char * getString() const { return this->m_pString ; }
size_t getSize() const { return this->m_iSize ; }
void copy { /* code for string copy */ }
void concat { /* code for string concatenation */ }
private :
size_t m_iSize ;
char * m_pString ;
} ;
inline CString operator + (const CString & lhs, const CString & rhs)
{
CString r(lhs) ;
r.concat(rhs) ;
return r ;
}
You see that when you call concat, both the pointer could need reallocation (to increase its size), and the size of the string must be updated automatically. You can't let the user modify the string by hand, and forget updating the size.
So, the class must protect its internal, and be sure everything will be correctly updated when needed.
Conclusion
For me, the difference between a struct and a class is the dependencies between the aggregated data.
If each and every piece of data is independent from all the others, then perhaps you should consider a struct (i.e., a class with public data member).
If not, or if in doubt, use a class.
Now, of course, in C#, the struct and class are two different type of objects (i.e. value types for structs, and referenced types for classes). But this is out of this topic, I guess.