I have a very strange bug cropping up right now in a fairly massive C++ application at work (massive in terms of CPU and RAM usage as well as code length - in excess of 100,000 lines). This is running on a dual-core Sun Solaris 10 machine. The program subscribes to stock price feeds and displays them on "pages" configured by the user (a page is a window construct customized by the user - the program allows the user to configure such pages). This program used to work without issue until one of the underlying libraries became multi-threaded. The parts of the program affected by this have been changed accordingly. On to my problem.
Roughly once in every three executions the program will segfault on startup. This is not necessarily a hard rule - sometimes it'll crash three times in a row then work five times in a row. It's the segfault that's interesting (read: painful). It may manifest itself in a number of ways, but most commonly what will happen is function A calls function B and upon entering function B the frame pointer will suddenly be set to 0x000002. Function A:
result_type emit(typename type_trait<T_arg1>::take _A_a1) const
{ return emitter_type::emit(impl_, _A_a1); }
This is a simple signal implementation. impl_ and _A_a1 are well-defined within their frame at the crash. On actual execution of that instruction, we end up at program counter 0x000002.
This doesn't always happen on that function. In fact it happens in quite a few places, but this is one of the simpler cases that doesn't leave that much room for error. Sometimes what will happen is a stack-allocated variable will suddenly be sitting on junk memory (always on 0x000002) for no reason whatsoever. Other times, that same code will run just fine. So, my question is, what can mangle the stack so badly? What can actually change the value of the frame pointer? I've certainly never heard of such a thing. About the only thing I can think of is writing out of bounds on an array, but I've built it with a stack protector which should come up with any instances of that happening. I'm also well within the bounds of my stack here. I also don't see how another thread could overwrite the variable on the stack of the first thread since each thread has it's own stack (this is all pthreads). I've tried building this on a linux machine and while I don't get segfaults there, roughly one out of three times it will freeze up on me.