// get all the nodes that are within Range distance of the root node of graph
Set<int> GetNodesInRange(Graph graph, int Range)
{
Set<int> out = new Set<int>();
GetNodesInRange(graph.root, int Range, out);
return out;
}
// get all the nodes that are within Range successor distance of node
// accepted nodes are placed in out
void GetNodesInRange(Node node, int Range, Set<int> out)
{
boolean alreadyVisited = out.add(node.value);
if (alreadyVisited) return;
if (Range == 0) return;
// for each successor node
{
GetNodesInRange(successor, Range-1, out);
}
}
// get all the nodes that are within Range distance of selected node in graph
Set<int> GetNodesInRange(Graph graph, int Range, int selected)
{
Set<int> out = new Set<int>();
GetNodesInRange(graph, Range, selected, out);
return out;
}
// get all the nodes that are successors of node and within Range distance
// of selected node
// accepted nodes are placed in out
// returns distance to selected node
int GetNodesInRange(Node node, int Range, int selected, Set<int> out)
{
if (node.value == selected)
{
GetNodesInRange(node, Range-1, out);
return 1;
}
else
{
int shortestDistance = Range + 1;
// for each successor node
{
int distance = GetNodesInRange(successor, Range, selected, out);
if (distance < shortestDistance) shortestDistance = distance;
}
if (shortestDistance <= Range)
{
out.add(node.value);
}
return shortestDistance + 1;
}
}
I modified your requirements somewhat to return a Set rather than a List.
The GetNodesInRange(Graph, int, int) method will not handle graphs that contain cycles. This can be overcome by maintaining a collection of nodes that have already been visited. The GetNodesInRange(Graph, int) method makes use of the fact that the out set is a collection of visited nodes to overcome cycles.
Note: This has not been tested in any way.