I am writing a program that will draw a solid along the curve of a spline. I am using visual studio 2005, and writing in C++ for OpenGL. I'm using FLTK to open my windows (fast and light toolkit).
I currently have an algorithm that will draw a Cardinal Cubic Spline, given a set of control points, by breaking the intervals between the points up into subintervals and drawing linesegments between these sub points. The number of subintervals is variable.
The line drawing code works wonderfully, and basically works as follows: I generate a set of points along the spline curve using the spline equation and store them in an array (as a special datastructure called Pnt3f, where the coordinates are 3 floats and there are some handy functions such as distance, length, dot and crossproduct). Then i have a single loop that iterates through the array of points and draws them as so:
glBegin(GL_LINE_STRIP);
for(pt = 0; pt<=numsubsegements ; ++pt) {
glVertex3fv(pt.v());
}
glEnd();
As stated, this code works great. Now what i want to do is, instead of drawing a line, I want to extrude a solid. My current exploration is using a 'cylinder' quadric to create a tube along the line. This is a bit trickier, as I have to orient openGL in the direction i want to draw the cylinder. My idea is to do this:
Psuedocode:
Push the current matrix,
translate to the first control point
rotate to face the next point
draw a cylinder (length = distance between the points)
Pop the matrix
repeat
My problem is getting the angles between the points. I only need yaw and pitch, roll isnt important. I know take the arc-cosine of the dot product of the two points divided by the magnitude of both points, will return the angle between them, but this is not something i can feed to OpenGL to rotate with. I've tried doing this in 2d, using the XZ plane to get x rotation, and making the points vectors from the origin, but it does not return the correct angle.
My current approach is much simpler. For each plane of rotation (X and Y), find the angle by:
arc-cosine( (difference in 'x' values)/distance between the points)
the 'x' value depends on how your set your plane up, though for my calculations I always use world x.
Barring a few issues of it making it draw in the correct quadrant that I havent worked out yet, I want to get advice to see if this was a good implementation, or to see if someone knew a better way.