I'm tring to find the maximum weight subsequence of an array of positive integers - the catch is that no adjacent members are allowed in the final subsequence.
The exact same question was asked here, and a recursive solution was given by MarkusQ thus:
function Max_route(A)
if A's length = 1
A[0]
else
maximum of
A[0]+Max_route(A[2...])
Max_route[1...]
He provides an explanation, but can anyone help me understand how he has expanded the function? Specifically what does he mean by
f[] :- [],0
f [x] :- [x],x
f [a,b] :- if a > b then [a],a else [b],b
f [a,b,t] :-
ft = f t
fbt = f [b|t]
if a + ft.sum > fbt.sum
[a|ft.path],a+ft.sum
else
fbt
Why does he expand f[]
to [],0
? Also how does his solution take into consideration non-adjacent members?
I have some C++ code that is based on this algorithm, which I can post if anyone wants to see it, but I just can't for the life of me fathom why it works.
==========For anyone who's interested - the C++ code ==============
I should add, that the array of integers is to be treated as a circular list, so any sequence containing the first element cannot contain the last.
int memo[55][55];
int solve(int s, int e)
{
if( s>e ) return 0;
int &ret=memo[s][e];
if(ret!=-1)
{
return ret;
}
ret=max(solve(s+1,e), solve(s+2,e)+a[s]);
return ret;
}
class Sequence
{
public:
int maxSequence(vector <int> s)
{
memset(memo,-1);
int n = s.size();
for(int i=0; i<n; i++)
a[i]=s[i];
return max(solve(0,n-2),solve(1,n-1));
}
};