I'm studing orders of growth "big oh", "big omega", and "big theta". Since I can't type the little symbols for these I will denote them as follows:
ORDER = big oh
OMEGA = big omega
THETA = big theta
For example I'll say n = ORDER(n^2) to mean that the function n is in the order of n^2 (n grows at most as fast n^2).
Ok for the most part I understand these:
n = ORDER(n^2) //n grows at most as fast as n^2
n^2 = OMEGA(n) //n^2 grows atleast as fast as n
8n^2 + 1000 = THETA(n^2) //same order of growth
Ok here comes the example that confuses me:
what is n(n+1) vs n^2
I realize that n(n+1) = n^2 + n; I would say it has the same order of growth as n^2; therefore I would say
n(n+1) = THETA(n^2)
but my question is, would it also be correct to say:
n(n+1) = ORDER(n^2)
please help because this is confusing to me. thanks.
Thank you guys!!
just to make sure I understand correctly, are these all true:
n^2+n = ORDER(2000n^2)
n^2+n = THETA(2000n^2)
n^2+n = OMEGA(2000n^2)
2000n^2 = ORDER(n^2+n)
2000n^2 = THETA(n^2+n)
2000n^2 = OMEGA(n^2+n)
So if f = THETA(g) then f=ORDER(g) and f=OMEGA(g) are also true.