You asked for the shortest code, so here it is. In four lines it can be done, although there is still a quadratic.
I've considered the point to be outside the circle.
I've not considered what happens if the point is directly above or below the circle center, that is cX=pX.
m=(cY-pY)/(cX-pX); //slope
b=cY-m*cX; //or Py-m*Px. Now you have a line in the form y=m*x+b
X=( (2mcY)*((-2*m*cY)^2-4*(cY^2+cX^2-b^2-2*b*cY-r^2)*(-1-m^2))^(1/2) )/(2*(cY^2+cX^2-b^2-2*bc*Y-r^2));
Y=mX+b;
1] Get an equation for a line connecting the point and the circle center.
2] Move along the line a distance of one radius from the center to find the point on the circle. That is: radius=a^2+b^2 which is: r=((cY-Y)+(cX-X))^(1/2)
3] Solve quadratically. X=quadratic_solver(r=((cY-Y)+(cX-X))^(1/2),X) which if you substitute in Y=m*X+b you get that hell above.
4] X and Y are your results on the circle.
I am rather certain I have made an error somewhere, please leave a comment if anyone finds something. Of course it is degenerate, one answer is furthest from your point and the other is closest.