It's been awhile since my algorithms class in school, so forgive me if my terminology is not exact.
I have a series of actions that, when run, produces some desired state (it's basically a set of steps to reproduce a bug, but that doesn't matter for the sake of this question).
My goal is to find the shortest series of steps that still produces the desired state. Any given step might be unnecessary, so I'm trying to remove those as efficiently as possible.
I want to preserve the order of the steps (so I can remove steps, but not rearrange them).
The naive approach I'm taking is to take the entire series and try removing each action. If I successfully can remove one action (without altering the final state), I start back at the beginning of the series. This should be O(n^2) in the worst case.
I'm starting to play around with ways to make this more efficient, but I'm pretty sure this is a solved problem. Unfortunately, I'm not sure exactly what to Google - the series isn't really a "path," so I can't use path-shortening algorithms. Any help - even just giving me some terms to search - would be helpful.
Update: Several people have pointed out that even my naive algorithm won't find the shortest solution. This is a good point, so let me revise my question slightly: any ideas about approximate algorithms for the same problem? I'd rather have a short solution that's near the shortest solution quickly than take a very long time to guarantee the absolute shortest series. Thanks!