A wonderful algorithm by Jack Wert can be found here
(as described for the case n is of the form (3^k-3)/2, but it is generalizable to other n, see the writeup below)
A shorter version and probably more readable version of that is here
For n of the form (3^k-3)/2, the above solution applies perfectly and the minimum number of weighings required is k.
In other cases...
Adapting Jack Wert's algorithm for all n.
In order to modify the above algorithm for all n, you can try the following (I haven't tried proving the correctness, though):
First check if n is of the from (3^k-3)/2. If it is, apply above algorithm.
If not,
If n = 3t (i.e. n is a multiple of 3), you find the least m > n such that m is of the form (3^k-3)/2. The number of weighings required will be k. Now form the groups 1, 3, 3^2, ..., 3^(k-2), Z, where 3^(k-2) < Z < 3^(k-1) and repeat the algorithm from Jack's solution.
Note: We would also need to generalize the method A (the case when we know if the coin is heavier of lighter), for arbitrary Z.
If n = 3t+1, try to solve for 3t (keeping one ball aside). If you don't find the odd ball among 3t, the one you kept aside is defective.
If n = 3t+2, form the groups for 3t+3, but have one group not have the one ball group. If you come to the stage when you have to rotate the one ball group, you know the defective ball is one of two balls and you can then weigh one of those two balls against one of the known good balls (from among the other 3t).