(Was inspired by Tony Breyal's rather good answer to post one of my own)
Zero is a tricky and subtle beast - it does not conform to the usual laws of algebra as we know them.
Zero divided by any number (except zero itself) is zero. Put more mathematically:
0/n = 0 for all non-zero numbers n.
You get into the tricky realms when you try to divide by zero itself. It's not true that a number divided by 0 is always undefined. It depends on the problem. I'm going to give you an example from calculus where the number 0/0 is defined.
Say we have two functions, f(x) and g(x). If you take their quotient, f(x)/g(x), you get another function. Let's call this h(x).
You can also take limits of functions. For example, the limit of a function f(x) as x goes to 2 is the value that the function gets closest to as it takes on x's that approach 2. We would write this limit as:
lim{x->2} f(x)
This is a pretty intuitive notion. Just draw a graph of your function, and move your pencil along it. As the x values approach 2, see where the function goes.
Now for our example. Let:
f(x) = 2x - 2
g(x) = x - 1
and consider their quotient:
h(x) = f(x)/g(x)
What if we want the lim{x->1} h(x)? There are theorems that say that
lim{x->1} h(x) = lim{x->1} f(x) / g(x)
= (lim{x->1} f(x)) / (lim{x->1} g(x))
= (lim{x->1} 2x-2) / (lim{x->1} x-1)
=~ [2*(1) - 2] / [(1) - 1] # informally speaking...
= 0 / 0
(!!!)
So we now have:
lim{x->1} h(x) = 0/0
But I can employ another theorem, called l'Hopital's rule, that tells me that this limit is also equal to 2. So in this case, 0/0 = 2 (didn't I tell you it was a strange beast?)
Here's another bit of weirdness with 0. Let's say that 0/0 followed that old algebraic rule that anything divided by itself is 1. Then you can do the following proof:
We're given that:
0/0 = 1
Now multiply both sides by any number n.
n * (0/0) = n * 1
Simplify both sides:
(n*0)/0 = n
(0/0) = n
Again, use the assumption that 0/0 = 1:
1 = n
So we just proved that all other numbers n are equal to 1! So 0/0 can't be equal to 1.
walks on back to her home over at mathoverflow.com