This is one of the research project that I am current going through. The requirement is almost exactly as yours, and we have developed nice algorithms to solve the problem.
The Input
The input is an endless stream of English words or phrases (we refer them as tokens
).
The Output
- Output top N tokens we have seen so
far (from all the tokens we have
seen!)
- Output top N tokens in a
historical window, say, last day or
last week.
An application of this research is to find the hot topic or trends of topic in Twitter or Facebook. We have a crawler that crawls on the website, which generates a stream of words, which will feed into the system. The system then will output the words or phrases of top frequency either at overall or historically. Imagine in last couple of weeks the phrase "World Cup" would appears many times in Twitter. So does "Paul the octopus". :)
String into Integers
The system has an integer ID for each word. Though there is almost infinite possible words on the Internet, but after accumulating a large set of words, the possibility of finding new words becomes lower and lower. We have already found 4 million different words, and assigned a unique ID for each. This whole set of data can be loaded into memory as a hash table, consuming roughly 300MB memory. (We have implemented our own hash table. The Java's implementation takes huge memory overhead)
Each phrase then can be identified as an array of integers.
This is important, because sorting and comparisons on integers is much much faster than on strings.
Archive Data
The system keeps archive data for every token. Basically it's pairs of (Token, Frequency)
. However, the table that stores the data would be so huge such that we have to partition the table physically. Once partition scheme is based on ngrams of the token. If the token is a single word, it is 1gram. If the token is two-word phrase, it is 2gram. And this goes on. Roughly at 4gram we have 1 billion records, with table sized at around 60GB.
Processing Incoming Streams
The system will absorbs incoming sentences until memory becomes fully utilized (Ya, we need a MemoryManager). After taking N sentences and storing in memory, the system pauses, and starts tokenize each sentence into words and phrases. Each token (word or phrase) is counted.
For highly frequent tokens, they are always kept in memory. For less frequent tokens, they are sorted based on IDs (remember we translate the String into an array of integers), and serialized into a disk file.
(However, for your problem, since you are counting only words, then you can put all word-frequency map in memory only. A carefully designed data structure would consume only 300MB memory for 4 million different words. Some hint: use ASCII char to represent Strings), and this is much acceptable.
Meanwhile, there will be another process that is activated once it finds any disk file generated by the system, then start merging it. Since the disk file is sorted, merging would take a similar process like merge sort. Some design need to be taken care at here as well, since we want to avoid too many random disk seeks. The idea is to avoid read (merge process)/write (system output) at the same time, and let the merge process read form one disk while writing into a different disk. This is similar like to implementing a locking.
End of Day
At end of day, the system will have many frequent tokens with frequency stored in memory, and many other less frequent tokens stored in several disk files (and each file is sorted).
The system flush the in-memory map into a disk file (sort it). Now, the problem becomes merging a set of sorted disk file. Using similar process, we would get one sorted disk file at the end.
Then, the final task is to merge the sorted disk file into archive database.
Depends on the size of archive database, the algorithm works like below if it is big enough:
for each record in sorted disk file
update archive database by increasing frequency
if rowcount == 0 then put the record into a list
end for
for each record in the list of having rowcount == 0
insert into archive database
end for
The intuition is that after sometime, the number of inserting will become smaller and smaller. More and more operation will be on updating only. And this updating will not be penalized by index.
Hope this entire explanation would help. :)