No it isn't possible, although my job would be much easier if it was :).
You have a O(log n) factor which you can't avoid. You can choose to take it as time or space, but the only way to avoid it is to not sort. With O(log n) space you can build a list of continuations that keep track of where you stashed the elements that didn't quite fit. With recursion this can be made to fit in O(1) heap, but that's only by using O(log n) stack frames instead.
Here is the progress of merge-sorting odds and evens from 1-9. Notice how you require log-space accounting to track the order inversions caused by the twin constraints of constant space and linear swaps.
. -
135792468
. -
135792468
: .-
125793468
: .-
123795468
#.:-
123495768
:.-
123459768
.:-
123456798
.-
123456789
123456789
There are some delicate boundary conditions, slightly harder than binary search to get right, and even in this (possible) form, and therefore a bad homework problem; but a really good mental exercise.
Update
Apparently I am mistaken and there is an algorithm that provides O(n) time and O(1) space. I have downloaded the papers to enlighten myself, and withdraw this answer as incorrect.