Greetings,
I am developing a scientific application used to perform physical simulations. The algorithms used are O(n3), so for a large set of data it takes a very long time to process. The application runs a simulation in around 17 minutes, and I have to run around 25,000 simulations. That is around one year of processing time.
The good news is that the simulations are completely independent from each other, so I can easily change the program to distribute the work among multiple computers.
There are multiple solutions I can see to implement this:
- Get a multi-core computer and distribute the work among all the cores. Not enough for what I need to do.
- Write an application that connects to multiple "processing" servers and distribute the load among them.
- Get a cluster of cheap linux computers, and have the program treat everything as a single entity.
Option number 2 is relatively easy to implement, so I don't look so much for suggestions for how to implement this (Can be done just by writing a program that waits on a given port for the parameters, processes the values and returns the result as a serialized file). That would be a good example of Grid Computing.
However, I wonder at the possibilities of the last option, a traditional cluster. How difficult is to run a Java program in a linux grid? Will all the separate computers be treated as a single computer with multiple cores, making it thus easy to adapt the program? Is there any good pointers to resources that would allow me to get started? Or I am making this over-complicated and I am better off with option number 2?
EDIT: As extra info, I am interested on how to implement something like described in this article from Wired Magazine: Scientific replaced a supercomputer with a Playstation 3 linux cluster. Definitively number two sounds like the way to go... but the coolness factor.
EDIT 2: The calculation is very CPU-Bound. Basically there is a lot of operations on large matrixes, such as inverse and multiplication. I tried to look for better algorithms for these operations but so far I've found that the operations I need are 0(n3) (In libraries that are normally available). The data set is large (for such operations), but it is created on the client based on the input parameters.