Yep, there is a correct answer. To be honest, Monte Carlo can theoretically come close in on the expect value given the law of large numbers. However, you won't want to try it here. Because practically each time you run the simu, you will have a slightly different result rounded to eight decimal places (And I think this setting does exactly deprive anybody of any chance of even thinking to use Monte Carlo). If you are lucky, you will have one simu that delivers the answer after lots of trials, given that you have submitted all the previous and failed. I think, captcha is the second way that euler project let you give up any brute-force approach.
Well, agree with Moron, you have to figure out "expected value" first. The principle of this problem is, you have to find a way to enumerate every possible "essential" outcomes after 50 rounds. Each outcome will have its own |L-R|, so sum them up, you will have the answer. No need to say, brute-force approach fails in most of the case, especially in this case. Fortunately, we have dynamic programming (dp), which is fast!
Basically, dp saves the computation results in each round as states and uses them in the next. Thus it avoids repeating the same computation over and over again. The difficult part of this problem is to find a way to represent a state, that is to say, how you would like to save your temp results. If you have solved problem 290 in dp, you can get some hints there about how to understand the problem and formulate a state.
Actually, that isn't the most difficult part for the mind. The hardest mental piece is whether you realize that some memory statuses of the two players are numerically different but substantially equivalent. For example, L:12345 R:12345 vs L:23456 R:23456 or even vs L:98765 R:98765. That is due to the fact that the call is random. That is also why I wrote possible "essential" outcomes. That is, you can summarize some states into one. And only by doing so, your program can finish in reasonal time.