Assuming that we're talking about lexicographic order over the values being permuted, there are two general approaches that you can use:
- transform one permutation of the elements to the next permutation (as ShreevatsaR posted), or
- directly compute the
n
th permutation, while counting n
from 0 upward.
For those (like me ;-) who don't speak c++ as natives, approach 1 can be implemented from the following pseudo-code, assuming zero-based indexing of an array with index zero on the "left" (substituting some other structure, such as a list, is "left as an exercise" ;-):
1. scan the array from right-to-left (indices descending from N-1 to 0)
1.1. if the current element is less than its right-hand neighbor,
call the current element the pivot,
and stop scanning
1.2. if the left end is reached without finding a pivot,
reverse the array and return
(the permutation was the lexicographically last, so its time to start over)
2. scan the array from right-to-left again,
to find the rightmost element larger than the pivot
(call that one the successor)
3. swap the pivot and the successor
4. reverse the portion of the array to the right of where the pivot was found
5. return
Here's an example starting with a current permutation of CADB:
1. scanning from the right finds A as the pivot in position 1
2. scanning again finds B as the successor in position 3
3. swapping pivot and successor gives CBDA
4. reversing everything following position 1 (i.e. positions 2..3) gives CBAD
5. CBAD is the next permutation after CADB
For the second approach (direct computation of the n
th permutation), remember that there are N!
permutations of N
elements. Therefore, if you are permuting N
elements, the first (N-1)!
permutations must begin with the smallest element, the next (N-1)!
permutations must begin with the second smallest, and so on. This leads to the following recursive approach (again in pseudo-code, numbering the permutations and positions from 0):
To find permutation x of array A, where A has N elements:
0. if A has one element, return it
1. set p to ( x / (N-1)! ) mod N
2. the desired permutation will be A[p] followed by
permutation ( x mod (N-1)! )
of the elements remaining in A after position p is removed
So, for example, the 13th permutation of ABCD is found as follows:
perm 13 of ABCD: {p = (13 / 3!) mod 4 = (13 / 6) mod 4 = 2; ABCD[2] = C}
C followed by perm 1 of ABD {because 13 mod 3! = 13 mod 6 = 1}
perm 1 of ABD: {p = (1 / 2!) mod 3 = (1 / 2) mod 2 = 0; ABD[0] = A}
A followed by perm 1 of BD {because 1 mod 2! = 1 mod 2 = 1}
perm 1 of BD: {p = (1 / 1!) mod 2 = (1 / 1) mod 2 = 1; BD[1] = D}
D followed by perm 0 of B {because 1 mod 1! = 1 mod 1 = 0}
B (because there's only one element)
DB
ADB
CADB
Incidentally, the "removal" of elements can be represented by a parallel array of booleans which indicates which elements are still available, so it is not necessary to create a new array on each recursive call.
So, to iterate across the permutations of ABCD, just count from 0 to 23 (4!-1) and directly compute the corresponding permutation.