Here is an idea on how to improve aaronasterling's answer. It avoids generating all N! permutations and sorting them according to their lexicographic order, and therefore has a much better time complexity.
Internally it uses an unusual permutation representation, that simulates a selection & removal process from a shrinking array. For example, the sequence <0,1,0> represents a permutation resulting from removing item #0 from [0,1,2], then removing item #1 from [1,2], and then removing item #0 from [1]. The resulting permutation is <0,2,1>. With this representation, the first permutation will always be <0,0,...0>, and the last one will always be <N-1,N-2,...0>. I will call this special representation the "array representation".
Clearly, an array representation of size N can be converted to a standard permutation representation in O(N^2) time, by using an array and shrinking it when necessary.
The following function can be used to return the Kth permutation on {0,1,2...,N-1}, in the array representation:
getPermutation(k, N) {
while(N > 0) {
nextItem = floor(k / (N-1)!)
output nextItem
k = k - nextItem * (N-1)!
N = N - 1
}
}
This algorithm works in O(N^2) time (due to the representation conversion), instead of O(N! log N) time.
--Example--
getPermutation(4,3) returns <2,0,0>. This array representation corresponds to <C,A,B>, which is really the permutation at index 4 in the ordered list of permutations on {A,B,C}:
ABC
ACB
BAC
BCA
CAB
CBA