Jerry's right, if it's just Ctrl-C you're worried about, you can ignore SIGINT for periods at a time. If you want to be proof against process death in general, you need some sort of minimal journalling. In order to swap two elements:
1) Add a record to a control structure at the end of the file or in a separate file, indicating which two elements of the file you are going to swap, A and B.
2) Copy A to the scratch space, record that you've done so, flush.
3) Copy B over A, then record in the scratch space that you have done so, flush
4) Copy from the scratch space over B.
5) Remove the record.
This is O(1) extra space for all practical purposes, so still counts as in-place under most definitions. In theory recording an index is O(log n) if n can be arbitrarily large: in reality it's a very small log n, and reasonable hardware / running time bounds it above at 64.
In all cases when I say "flush", I mean commit the changes "far enough". Sometimes your basic flush operation only flushes buffers within the process, but it doesn't actually sync the physical medium, because it doesn't flush buffers all the way through the OS/device driver/hardware levels. That's sufficient when all you're worried about is process death, but if you're worried about abrupt media dismounts then you'd have to flush past the driver. If you were worried about power failure, you'd have to sync the hardware, but you're not. With a UPS or if you think power cuts are so rare you don't mind losing data, that's fine.
On startup, check the scratch space for any "swap-in-progress" records. If you find one, work out how far you got and complete the swap from there to get the data back into a sound state. Then start your sort over again.
Obviously there's a performance issue here, since you're doing twice as much writing of records as before, and flushes/syncs may be astonishingly expensive. In practice your in-place sort might have some compound moving-stuff operations, involving many swaps, but which you can optimise to avoid every element hitting the scratch space. You just have to make sure that before you overwrite any data, you have a copy of it safe somewhere and a record of where that copy should go in order to get your file back to a state where it contains exactly one copy of each element.
Jerry's also right that true in-place sorting is too difficult and slow for most practical purposes. If you can spare some linear fraction of the original file size as scratch space, you'll have a much better time of it with a merge sort.
Based on your clarification, you wouldn't need any flush operations even with an in-place sort. You need scratch space in memory that works the same way, and that your SIGINT handler can access in order to get the data safe before exiting, rather than restoring on startup after an abnormal exit, and you need to access that memory in a signal-safe way (which technically means using a sig_atomic_t
to flag which changes have been made). Even so, you're probably better off with a mergesort than a true in-place sort.