I have the equation y = 3(x+1)^2 + 5(x+1)^4.
Using Horner's scheme I could evaluate this polynomial in this form, y = 8+x(26+x(33+x(20+5x))), thus requiring 8 arithmetic operations.
I could also evaluate it in this form, y = (x+1)^2 * ((5x+10)x+8), requiring 7 operations.
I've been told this can be done in 5 operations but Horner's algorithm is supposed to be most efficient and it can only do it in 7 operations. Am I missing something?