At the end of the post, I will answer your question of why you might want to use multiple random number generators for "more randomness".
There are philosophical debates about what randomness means. Here, I will mean "indistinguishable in every respect from a uniform(0,1) iid distribution over the samples drawn" I am totally ignoring philosophical questions of what random is.
Knuth volume 2 has an analysis where he attempts to create a random number generator as you suggest, and then analyzes why it fails, and what true random processes are. Volume 2 examines RNGs in detail.
The others recommend you using random physical processes to generate random numbers. However, as we can see in the Espo/vt interaction, these processes can have subtle periodic elements and other non-random elements, in part due to outside factors with deterministic behavior. In general, it is best never to assume randomness, but always to test for it, and you usually can correct for such artifacts if you are aware of them.
It is possible to create an "infinite" stream of bits that appears completely random, deterministically. Unfortunately, such approaches grow in memory with the number of bits asked for (as they would have to, to avoid repeating cycles), so their scope is limited.
In practice, you are almost always better off using a pseudo-random number generator with known properties. The key numbers to look for is the phase-space dimension (which is roughly offset between samples you can still count on being uniformally distributed) and the bit-width (the number of bits in each sample which are uniformally random with respect to each other), and the cycle size (the number of samples you can take before the distribution starts repeating).
However, since random numbers from a given generator are deterministically in a known sequence, your procedure might be exposed by someone searching through the generator and finding an aligning sequence. Therefore, you can likely avoid your distribution being immediately recognized as coming from a particular random number generator if you maintain two generators. From the first, you sample i, and then map this uniformally over one to n, where n is at most the phase dimension. Then, in the second you sample i times, and return the ith result. This will reduce your cycle size to (orginal cycle size/n) in the worst case, but for that cycle will still generate uniform random numbers, and do so in a way that makes the search for alignment exponential in n. It will also reduce the independent phase length. Don't use this method unless you understand what reduced cycle and independent phase lengths mean to your application.