There is a detailed discussion on the Bit Twiddling Hacks page.
int v; // we want to find the sign of v
int sign; // the result goes here
// CHAR_BIT is the number of bits per byte (normally 8).
sign = -(v < 0); // if v < 0 then -1, else 0.
// or, to avoid branching on CPUs with flag registers (IA32):
sign = -(int)((unsigned int)((int)v) >> (sizeof(int) * CHAR_BIT - 1));
// or, for one less instruction (but not portable):
sign = v >> (sizeof(int) * CHAR_BIT - 1);
// The last expression above evaluates to sign = v >> 31 for 32-bit integers.
// This is one operation faster than the obvious way, sign = -(v < 0). This
// trick works because when signed integers are shifted right, the value of the
// far left bit is copied to the other bits. The far left bit is 1 when the value
// is negative and 0 otherwise; all 1 bits gives -1. Unfortunately, this behavior
// is architecture-specific.
// Alternatively, if you prefer the result be either -1 or +1, then use:
sign = +1 | (v >> (sizeof(int) * CHAR_BIT - 1)); // if v < 0 then -1, else +1
// On the other hand, if you prefer the result be either -1, 0, or +1, then use:
sign = (v != 0) | -(int)((unsigned int)((int)v) >> (sizeof(int) * CHAR_BIT - 1));
// Or, for more speed but less portability:
sign = (v != 0) | (v >> (sizeof(int) * CHAR_BIT - 1)); // -1, 0, or +1
// Or, for portability, brevity, and (perhaps) speed:
sign = (v > 0) - (v < 0); // -1, 0, or +1
// If instead you want to know if something is non-negative, resulting in +1
// or else 0, then use:
sign = 1 ^ ((unsigned int)v >> (sizeof(int) * CHAR_BIT - 1)); // if v < 0 then 0, else 1
// Caveat: On March 7, 2003, Angus Duggan pointed out that the 1989 ANSI C
// specification leaves the result of signed right-shift implementation-defined,
// so on some systems this hack might not work. For greater portability, Toby
// Speight suggested on September 28, 2005 that CHAR_BIT be used here and
// throughout rather than assuming bytes were 8 bits long. Angus recommended
// the more portable versions above, involving casting on March 4, 2006.
// Rohit Garg suggested the version for non-negative integers on September 12, 2009.