If I have a large set of continuous ranges ( e.g. [0..5], [10..20], [7..13],[-1..37] ) and can arrange those sets into any data-structure I like, what's the most efficient way to test which sets a particular test_number belongs to?
I've thought about storing the sets in a balanced binary tree based on the low number of a set ( and each node would have all the sets that have the same lowest number of their set). This would allow you to efficiently prune the number of sets based on whether the test_number you're testing against the sets is less than the lowest number of a set, and then prune that node and all the nodes to the right of that node ( which have a low number in their range which is greater than the test_number) . I think that would prune about 25% of the sets on average, but then I would need to linearly look at all the rest of the nodes in the binary tree to determine whether the test_number belonged in those sets. ( I could further optimize by sorting the lists of sets at any one node by the highest number in the set, which would allow me to do binary search within a specific list to determine which set, if any, contain the test_number. Unfortunately, most of the sets I'll be dealing with don't have overlapping set boundaries.)
I think that this problem has been solved in graphics processing since they've figured out ways to efficiently test which polygons in their entire model contribute to a specific pixel, but I don't know the terminology of that type of algorithm.