There's no reason to make something so complicated like that. I see that you have an action ID, so I suppose there would be a fixed number of actions.
For each action, you would define a data structure, and then you would put each one of those values in the structure. To send it over the wire, you just allocate sum(sizeof(struct.i)) bytes for each element in your structure. So your packet would look like this:
[action ID][item 1 (sizeof(item 1 bytes)][item 1 (sizeof(item 2 bytes)]...[item n (sizeof(item n bytes)]
The idea is, you already know the size and type of each variable on each side of the connection is, so you don't need to send that information.
For strings, you can just throw 'em in in a null terminated form, and then when you 'know' to look for a string based on your packet type, start reading and looking for a null.
--
Another option would be to use '\r\n' to delineate your variables. That would require some overhead, and you would have to use text, rather then binary values for numbers. But that way you could just use readline to read each variable. Your packets would look like this
[action ID]
[item 1 (as text)]
...
[item n (as text)]
--
Finally, simply serializing objects and passing them down the wire is a good way to do this too, with the least amount of code to write. Remember that you don't want to prematurely optimize, and that includes network traffic as well. If it turns out you need to squeeze out a little bit more performance later on you can go back and figure out a more efficient mechanism.
And check out google's protocol buffers, which are supposedly an extreemly fast way to serialize data in a platform-neutral way, kind of like a binary XML, but without nested elements. There's also JSON, which is another platform neutral encoding. Using protocol buffers or JSON would mean you wouldn't have to worry about how to specifically encode the messages.