views:

68

answers:

4

Hi,

I am looking at implementing a priority queue with an added requirement, a find/search function which will tell whether an item is anywhere within the queue. So the functions will be: insert, del-min and find.

I am unsure whether I should use a Heap or a Self-balancing binary search tree. It appears PQs are usually implemented with a Heap, but I am wondering if there is any advantage in using a binary search tree since I also need that find function.

Furthermore, on average I'll be doing more inserts than deletes. I am also considering a d-ary heap. Basically, every second counts.

Thanks!

A: 

IIRC search/find on a heap is O(n) whereas on a tree it is O(log(n)) and the other standard PQ operations are the same.

Heaps are only empirically more efficient by some constant factor, so if its a big queue a tree should be better, if its small you need to test and profile. its all good to know in theory whats faster, but if those constant factors are large it may be completely irrelevant for sufficiently small data sets.

tobyodavies
A: 

Why can't you just use a Priority Queue and a Set? When you enqueue something, you add it to the set. When you dequeue it, you remove it from the set. That way the set will tell you if something is in the queue.

dangph
+1  A: 

If your find operation is relatively infrequent (and your heap fairly small), I'd just do a linear search. If it is relatively frequent, or the heap is enormous, consider tracking heap membership (to do your 'find' test) with a separate data structure or an object flag. The joy of external indexing is being able to put your object in as many containers as you like.

If by 'find' you really mean 'find and modify' (I find I often need to delete things from priority queues independently of the typical insert/del-min), here are three approaches I've used:

Given a high rate of insert/del-min (100k/s continuous) and a low rate of find-delete (say 1/s) over a fairly small working set (500-1000) I did a linear search for the element and then deleted it from the tree in the standard way.

Given a high rate of insert/del-min plus fairly frequent find-deletes I simply marked the deleted objects as "uninteresting" after finding them indirectly. The actual free was deferred until the object was dequeued as normal.

Given a small std::priority_queue (which has no access methods outside of insert/del-min) of only a few elements and fairly infrequent deletions, I just copied the entire queue to a temporary std::vector and copied the modified/desired part back into the queue. Then I cried myself to sleep.

Ben Jackson