Assign numbers to nodes from 1 to n.
Pick the node number 1. Call it 'A'.
Enumerate pairs of links coming out of 'A'.
Pick one. Let's call the adjacent nodes 'B' and 'C' with B less than C.
If B and C are connected, then output the cycle ABC, return to step 3 and pick a different pair.
If B and C are not connected:
- Enumerate all nodes connected to B. Suppose it's connected to D, E, and F. Create a list of vectors CABD, CABE, CABF. For each of these:
- if the last node is connected to any internal node except C and B, discard the vector
- if the last node is connected to C, output and discard
- if it's not connected to either, create a new list of vectors, appending all nodes to which the last node is connected.
Repeat until you run out of vectors.
Repeat steps 3-5 with all pairs.
Remove node 1 and all links that lead to it. Pick the next node and go back to step 2.
Edit: and you can do away with one nested loop.
This seems to work at the first sight, there may be bugs, but you should get the idea:
void chordless_cycles(int* adjacency, int dim)
{
for(int i=0; i<dim-2; i++)
{
for(int j=i+1; j<dim-1; j++)
{
if(!adjacency[i+j*dim])
continue;
list<vector<int> > candidates;
for(int k=j+1; k<dim; k++)
{
if(!adjacency[i+k*dim])
continue;
if(adjacency[j+k*dim])
{
cout << i+1 << " " << j+1 << " " << k+1 << endl;
continue;
}
vector<int> v;
v.resize(3);
v[0]=j;
v[1]=i;
v[2]=k;
candidates.push_back(v);
}
while(!candidates.empty())
{
vector<int> v = candidates.front();
candidates.pop_front();
int k = v.back();
for(int m=i+1; m<dim; m++)
{
if(find(v.begin(), v.end(), m) != v.end())
continue;
if(!adjacency[m+k*dim])
continue;
bool chord = false;
int n;
for(n=1; n<v.size()-1; n++)
if(adjacency[m+v[n]*dim])
chord = true;
if(chord)
continue;
if(adjacency[m+j*dim])
{
for(n=0; n<v.size(); n++)
cout<<v[n]+1<<" ";
cout<<m+1<<endl;
continue;
}
vector<int> w = v;
w.push_back(m);
candidates.push_back(w);
}
}
}
}
}