Have you considered Numpy arrays?
PyTables are wonderful when your data is too large to fit in memory, but a
200x2000 matrix of 8 byte floats only requires about 3MB of memory. So I think
PyTables may be overkill.
You can save numpy arrays to files using np.savetxt
or np.savez
(for compression), and can read them from files with np.loadtxt
or np.load
.
If you have many such arrays to store on disk, then I'd suggest using a database instead of numpy .npz
files. By the way, to store a 200x2000 matrix in a database, you only need 4 table columns: id, row, col, value:
import sqlite3
import numpy as np
db = sqlite3.connect(':memory:')
cursor = db.cursor()
cursor.execute('''CREATE TABLE foo
(id INTEGER PRIMARY KEY AUTOINCREMENT,
row INTEGER, col INTEGER, value FLOAT)''')
ROWS=4
COLUMNS=6
matrix = np.random.random((ROWS,COLUMNS))
print(matrix)
# [[ 0.87050721 0.22395398 0.19473001 0.14597821 0.02363803 0.20299432]
# [ 0.11744885 0.61332597 0.19860043 0.91995295 0.84857095 0.53863863]
# [ 0.80123759 0.52689885 0.05861043 0.71784406 0.20222138 0.63094807]
# [ 0.01309897 0.45391578 0.04950273 0.93040381 0.41150517 0.66263562]]
# Store matrix in table foo
cursor.executemany('INSERT INTO foo(row, col, value) VALUES (?,?,?) ',
((r,c,value) for r,row in enumerate(matrix)
for c,value in enumerate(row)))
# Retrieve matrix from table foo
cursor.execute('SELECT value FROM foo ORDER BY row,col')
data=zip(*cursor.fetchall())[0]
matrix2 = np.fromiter(data,dtype=np.float).reshape((ROWS,COLUMNS))
print(matrix2)
# [[ 0.87050721 0.22395398 0.19473001 0.14597821 0.02363803 0.20299432]
# [ 0.11744885 0.61332597 0.19860043 0.91995295 0.84857095 0.53863863]
# [ 0.80123759 0.52689885 0.05861043 0.71784406 0.20222138 0.63094807]
# [ 0.01309897 0.45391578 0.04950273 0.93040381 0.41150517 0.66263562]]
If you have many such 200x2000 matrices, you just need one more table column to specify which matrix.