Operator overloading can be a good or a bad thing. Good when it leads to simpler looking code. Bad when it leads to writers either overloading with incorrect semantics (yet a solution that compiles) or where the intuitive way to use the operator leads to highly inefficient code.
Note the latter statement can apply to std::string too, which could potentially make large numbers of copies, and which is why the standard states that a string does not have to be stored internally in a contiguous buffer (in the old days they used copy-on-write references to and could store such references to both strings being concatenated until required. Subsequently it was found to be non-threadsafe and making it so was more costly than simply copying the buffer so now they copy every time and are inefficient again).
The correct signature of operator+ (in the case all are the same type) is as follows:
T operator+( const T&, const T& );
As a member function it would be:
class T
{
// make public if necessary
T operator+( const T& rhs ) const;
};
You can implement operator+ automatically as a template whenever operator += is available with
template<typename T, typename R>
T operator+( const T& lhs, const R& rhs )
{
T copy(lhs);
return copy += rhs;
}
If you want to declare an overloaded operator of your template as a friend, this is the correct way to do it. I will show it with operator<<
// first some forward declarations, assume ostream already declared with #include <iosfwd> minimum
template< typename T > class Forest;
template< typename T > std::ostream & operator<<( std::ostream & os, const Forest<T> & for );
template< typename T> class Forest
{
friend std::ostream& operator<< <>( std::ostream&, const Forest<T> & );
//rest of class Forest
};
template< typename T >
std::ostream & operator<<( std::ostream& os, const Forest<T> & forest )
{
// implement
return os;
}
You would apply a similar technique to any other external function you wish to declare as a friend to your class, i.e.
- Forwardly declare your class as a template
- Forwardly declare the method as a template function
- Make the function a friend using <> before the opening parentheses denoting the parameters
- Implement the function after your class.