If instead of just "lit" or "unlit" you would keep a set of nodes from which a node is powered or lit, and consider a node with an empty set as "unlit" and a node with a non-empty set as "lit", then removing an edge would simply involve removing the source node from the target node's set.
EDIT: Forgot this:
And if you remove the last lit-from-node in the set, traverse the edges and remove the node you just "unlit" from their set (and possibly traverse from there too, and so on)
EDIT2 (rephrase for tafa):
Firstly: I misread the original question and thought that it stated that for each node it was already known to be lit or unlit, which as I re-read it now, was not mentioned.
However, if for each node in your network you store a set containing the nodes it was lit through, you can easily traverse the graph from the removed edge and fix up any lit/unlit references.
So for example if we have nodes A,B,C,D like this: (lame attempt at ascii art)
A -> B >- D
\-> C >-/
Then at node A you would store that it was a source (and thus lit by itself), and in both B and C you would store they were lit by A, and in D you would store that it was lit by both A and C.
Then say we remove the edge from B to D: In D we remove B from the lit-source-list, but it remains lit as it is still lit by A. Next say we remove the edge from A to C after that: A is removed from C's set, and thus C is no longer lit. We then go on to traverse the edges that originated at C, and remove C from D's set which is now also unlit. In this case we are done, but if the set was bigger, we'd just go on from D.
This algorithm will only ever visit the nodes that are directly affected by a removal or addition of an edge, and as such (apart from the extra storage needed at each node) should be close to optimal.