I'm trying to perform some calculations on a non-directed, cyclic, weighted graph, and I'm looking for a good function to calculate an aggregate weight.
Each edge has a distance value in the range [1,∞). The algorithm should give greater importance to lower distances (it should be monotonically decreasing), and it should assign the value 0 for the distance ∞.
My first instinct was simply 1/d, which meets both of those requirements. (Well, technically 1/∞ is undefined, but programmers tend to let that one slide more easily than do mathematicians.) The problem with 1/d is that the function cares a lot more about the difference between 1/1 and 1/2 than the difference between 1/34 and 1/35. I'd like to even that out a bit more. I could use √(1/d) or ∛(1/d) or even ∜(1/d), but I feel like I'm missing out on a whole class of possibilities. Any suggestions?
(I thought of ln(1/d), but that goes to -∞ as d goes to ∞, and I can't think of a good way to push that up to 0.)
Later:
I forgot a requirement: w(1) must be 1. (This doesn't invalidate the existing answers; a multiplicative constant is fine.)