Interfaces allow statically typed languages to support polymorphism. An Object Oriented purist would insist that a language should provide inheritance, encapsulation, modularity and polymorphism in order to be a fully-featured Object Oriented language. In dynamically-typed - or duck typed - languages (like Smalltalk,) polymorphism is trivial; however, in statically typed languages (like Java or C#,) polymorphism is far from trivial (in fact, on the surface it seems to be at odds with the notion of strong typing.)
Let me demonstrate:
In a dynamically-typed (or duck typed) language (like Smalltalk), all variables are references to objects (nothing less and nothing more.) So, in Smalltalk, I can do this:
|anAnimal|
anAnimal := Pig new.
anAnimal makeNoise.
anAnimal := Cow new.
anAnimal makeNoise.
That code:
- Declares a local variable called anAnimal (note that we DO NOT specify the TYPE of the variable - all variables are references to an object, no more and no less.)
- Creates a new instance of the class named "Pig"
- Assigns that new instance of Pig to the variable anAnimal.
- Sends the message
makeNoise
to the pig.
- Repeats the whole thing using a cow, but assigning it to the same exact variable as the Pig.
The same Java code would look something like this (making the assumption that Duck and Cow are subclasses of Animal:
Animal anAnimal = new Pig();
duck.makeNoise();
anAnimal = new Cow();
cow.makeNoise();
That's all well and good, until we introduce class Vegetable. Vegetables have some of the same behavior as Animal, but not all. For example, both Animal and Vegetable might be able to grow, but clearly vegetables don't make noise and animals cannot be harvested.
In Smalltalk, we can write this:
|aFarmObject|
aFarmObject := Cow new.
aFarmObject grow.
aFarmObject makeNoise.
aFarmObject := Corn new.
aFarmObject grow.
aFarmObject harvest.
This works perfectly well in Smalltalk because it is duck-typed (if it walks like a duck, and quacks like a duck - it is a duck.) In this case, when a message is sent to an object, a lookup is performed on the receiver's method list, and if a matching method is found, it is called. If not, some kind of NoSuchMethodError exception is thrown - but it's all done at runtime.
But in Java, a statically typed language, what type can we assign to our variable? Corn needs to inherit from Vegetable, to support grow, but cannot inherit from Animal, because it does not make noise. Cow needs to inherit from Animal to support makeNoise, but cannot inherit from Vegetable because it should not implement harvest. It looks like we need multiple inheritance - the ability to inherit from more than one class. But that turns out to be a pretty difficult language feature because of all the edge cases that pop up (what happens when more than one parallel superclass implement the same method?, etc.)
Along come interfaces...
If we make Animal and Vegetable classes, with each implementing Growable, we can declare that our Cow is Animal and our Corn is Vegetable. We can also declare that both Animal and Vegetable are Growable. That lets us write this to grow everything:
List<Growable> list = new ArrayList<Growable>();
list.add(new Cow());
list.add(new Corn());
list.add(new Pig());
for(Growable g : list) {
g.grow();
}
And it lets us do this, to make animal noises:
List<Animal> list = new ArrayList<Animal>();
list.add(new Cow());
list.add(new Pig());
for(Animal a : list) {
a.makeNoise();
}
The advantage to the duck-typed language is that you get really nice polymorphism: all a class has to do to provide behavior is provide the method. As long as everyone plays nice, and only sends messages that match defined methods, all is good. The downside is that the kind of error below isn't caught until runtime:
|aFarmObject|
aFarmObject := Corn new.
aFarmObject makeNoise. // No compiler error - not checked until runtime.
Statically-typed languages provide much better "programming by contract," because they will catch the two kinds of error below at compile-time:
// Compiler error: Corn cannot be cast to Animal.
Animal farmObject = new Corn();
farmObject makeNoise();
--
// Compiler error: Animal doesn't have the harvest message.
Animal farmObject = new Cow();
farmObject.harvest();
So....to summarize:
Interface implementation allows you to specify what kinds of things objects can do (interaction) and Class inheritance lets you specify how things should be done (implementation).
Interfaces give us many of the benefits of "true" polymorphism, without sacrificing compiler type checking.