tags:

views:

586

answers:

2

I need a good source for reading up on how to create a algorithm to take two polylines (a path comprised of many lines) and performing a union, subtraction, or intersection between them. This is tied to a custom API so I need to understand the underlying algorithm.

Plus any sources in a VB dialect would be doubly helpful.

+3  A: 

Several routines for you here. Hope you find them useful :-)

// routine to calculate the square of either the shortest distance or largest distance
// from the CPoint to the intersection point of a ray fired at an angle flAngle 
// radians at an array of line segments
// this routine returns TRUE if an intersection has been found in which case flD
// is valid and holds the square of the distance.
// and returns FALSE if no valid intersection was found
// If an intersection was found, then intersectionPoint is set to the point found
bool CalcIntersection(const CPoint &cPoint, 
                      const float flAngle,
          const int nVertexTotal,
          const CPoint *pVertexList,
          const BOOL bMin,
          float &flD,
          CPoint &intersectionPoint)

{
    float d, dsx, dsy, dx, dy, lambda, mu, px, py;
    int p0x, p0y, p1x, p1y;

    // get source position 
    const float flSx = (float)cPoint.x;
    const float flSy = -(float)cPoint.y;

    // calc trig functions
    const float flTan = tanf(flAngle);
    const float flSin = sinf(flAngle);
    const float flCos = cosf(flAngle);
    const bool bUseSin = fabsf(flSin) > fabsf(flCos);

    // initialise distance
    flD = (bMin ? FLT_MAX : 0.0f);

    // for each line segment in protective feature
    for(int i = 0; i < nVertexTotal; i++) 
    {
     // get coordinates of line (negate the y value so the y-axis is upwards)
     p0x = pVertexList[i].x;
     p0y = -pVertexList[i].y;
     p1x = pVertexList[i + 1].x;
     p1y = -pVertexList[i + 1].y;

     // calc. deltas
     dsx = (float)(cPoint.x - p0x);
     dsy = (float)(-cPoint.y - p0y);
     dx = (float)(p1x - p0x);
     dy = (float)(p1y - p0y);

     // calc. denominator
     d = dy * flTan - dx;

     // if line & ray are parallel
     if(fabsf(d) < 1.0e-7f)
      continue;

     // calc. intersection point parameter
     lambda = (dsy * flTan - dsx) / d;

     // if intersection is not valid
     if((lambda <= 0.0f) || (lambda > 1.0f))
      continue;

     // if sine is bigger than cosine
     if(bUseSin){
      mu = ((float)p0x + lambda * dx - flSx) / flSin;
     } else {
      mu = ((float)p0y + lambda * dy - flSy) / flCos;
     }

     // if intersection is valid
     if(mu >= 0.0f){

      // calc. intersection point
      px = (float)p0x + lambda * dx;
      py = (float)p0y + lambda * dy;

      // calc. distance between intersection point & source point
      dx = px - flSx;
      dy = py - flSy;
      d = dx * dx + dy * dy;

      // compare with relevant value
      if(bMin){
       if(d < flD)
       {
        flD = d;
        intersectionPoint.x = RoundValue(px);
        intersectionPoint.y = -RoundValue(py);
       }
      } else {
       if(d > flD)
       {
        flD = d;
        intersectionPoint.x = RoundValue(px);
        intersectionPoint.y = -RoundValue(py);
       }
      }
     }
    }

    // return 
    return(bMin ? (flD != FLT_MAX) : (flD != 0.0f));
}

// Routine to calculate the square of the distance from the CPoint to the
// intersection point of a ray fired at an angle flAngle radians at a line.
// This routine returns TRUE if an intersection has been found in which case flD
// is valid and holds the square of the distance.
// Returns FALSE if no valid intersection was found.
// If an intersection was found, then intersectionPoint is set to the point found.
bool CalcIntersection(const CPoint &cPoint, 
                      const float flAngle,
          const CPoint &PointA,
          const CPoint &PointB,
          const bool bExtendLine,
          float &flD,
          CPoint &intersectionPoint)
{
    // get source position 
    const float flSx = (float)cPoint.x;
    const float flSy = -(float)cPoint.y;

    // calc trig functions
    float flTan = tanf(flAngle);
    float flSin = sinf(flAngle);
    float flCos = cosf(flAngle);
    const bool bUseSin = fabsf(flSin) > fabsf(flCos);

    // get coordinates of line (negate the y value so the y-axis is upwards)
    const int p0x = PointA.x;
    const int p0y = -PointA.y;
    const int p1x = PointB.x;
    const int p1y = -PointB.y;

    // calc. deltas
    const float dsx = (float)(cPoint.x - p0x);
    const float dsy = (float)(-cPoint.y - p0y);
    float dx = (float)(p1x - p0x);
    float dy = (float)(p1y - p0y);

    // Calc. denominator
    const float d = dy * flTan - dx;

    // If line & ray are parallel
    if(fabsf(d) < 1.0e-7f)
     return false;

    // calc. intersection point parameter
    const float lambda = (dsy * flTan - dsx) / d;

    // If extending line to meet point, don't check for ray missing line
    if(!bExtendLine)
    {
     // If intersection is not valid
     if((lambda <= 0.0f) || (lambda > 1.0f))
      return false; // Ray missed line
    }

    // If sine is bigger than cosine
    float mu;
    if(bUseSin){
     mu = ((float)p0x + lambda * dx - flSx) / flSin;
    } else {
     mu = ((float)p0y + lambda * dy - flSy) / flCos;
    }

    // if intersection is valid
    if(mu >= 0.0f)
    {
     // calc. intersection point
     const float px = (float)p0x + lambda * dx;
     const float py = (float)p0y + lambda * dy;

     // calc. distance between intersection point & source point
     dx = px - flSx;
     dy = py - flSy;
     flD = (dx * dx) + (dy * dy);

     intersectionPoint.x = RoundValue(px);
     intersectionPoint.y = -RoundValue(py);
     return true;
    }

    return false;
}

// Fillet (with a radius of 0) two lines. From point source fired at angle (radians) to line Line1A, Line1B.
// Modifies line end point Line1B. If the ray does not intersect line, then it is rotates every 90 degrees
// and tried again until fillet is complete.
void Fillet(const CPoint &source, const float fThetaRadians, const CPoint &Line1A, CPoint &Line1B)
{
    if(Line1A == Line1B)
     return; // No line

    float dist;

    if(CalcIntersection(source, fThetaRadians, Line1A, Line1B, true, dist, Line1B))
     return;
    if(CalcIntersection(source, CalcBaseFloat(TWO_PI, fThetaRadians + PI * 0.5f), Line1A, Line1B, true, dist, Line1B))
     return;
    if(CalcIntersection(source, CalcBaseFloat(TWO_PI, fThetaRadians + PI), Line1A, Line1B, true, dist, Line1B))
     return;
    if(!CalcIntersection(source, CalcBaseFloat(TWO_PI, fThetaRadians + PI * 1.5f), Line1A, Line1B, true, dist, Line1B))
     ASSERT(FALSE); // Could not find intersection?
}

// routine to determine if an array of line segments cross gridSquare
// x and y give the float coordinates of the corners
BOOL CrossGridSquare(int nV, const CPoint *pV, 
                     const CRect &extent, const CRect  &gridSquare)
{
    // test extents
    if( (extent.right < gridSquare.left) ||
     (extent.left > gridSquare.right) ||  
     (extent.top  > gridSquare.bottom) ||
     (extent.bottom < gridSquare.top))
    {
     return FALSE;
    }

    float a, b, c, dx, dy, s, x[4], y[4];
    int max_x, max_y, min_x, min_y, p0x, p0y, p1x, p1y, sign, sign_old;

    // construct array of vertices for grid square
    x[0] = (float)gridSquare.left;
    y[0] = (float)gridSquare.top;
    x[1] = (float)(gridSquare.right);
    y[1] = y[0];
    x[2] = x[1];
    y[2] = (float)(gridSquare.bottom);
    x[3] = x[0];
    y[3] = y[2];

    // for each line segment
    for(int i = 0; i < nV; i++) 
    {
     // get end-points
     p0x = pV[i].x;
     p0y = pV[i].y;
     p1x = pV[i + 1].x;
     p1y = pV[i + 1].y;

     // determine line extent
     if(p0x > p1x){
      min_x = p1x;
      max_x = p0x;
     } else {
      min_x = p0x;
      max_x = p1x;
     }

     if(p0y > p1y){
      min_y = p1y;
      max_y = p0y;
     } else {
      min_y = p0y;
      max_y = p1y;
     }

     // test to see if grid square is outside of line segment extent
     if( (max_x < gridSquare.left)  ||
      (min_x > gridSquare.right) ||  
      (max_y < gridSquare.top)   ||
      (min_y > gridSquare.bottom))
     {
      continue;
     }

     // calc. line equation
     dx = (float)(p1x - p0x);
     dy = (float)(p1y - p0y);
     a = dy;
     b = -dx;
     c = -dy * (float)p0x + dx * (float)p0y;

     // evaluate line eqn. at first grid square vertex
     s = a * x[0] + b * y[0] + c;
     if(s < 0.0f){
      sign_old = -1;
     } else if(s > 1.0f){
      sign_old = 1;
     } else {
      sign_old = 0;
     }

     // evaluate line eqn. at other grid square vertices
     for (int j = 1; j < 4; j++) 
     {
      s = a * x[j] + b * y[j] + c;
      if(s < 0.0f){
       sign = -1;
      } else if(s > 1.0f){
       sign = 1;
      } else {
       sign = 0;
      }

      // if there has been a chnage in sign
      if(sign != sign_old)
       return TRUE;
     }
    }

    return FALSE;
}

// calculate the square of the shortest distance from point s
// and the line segment between p0 and p1
// t is the point on the line from which the minimum distance
// is measured
float CalcShortestDistanceSqr(const CPoint &s,
               const CPoint &p0,
               const CPoint &p1,
            CPoint &t)
{
    // if point is at a vertex
    if((s == p0) || (s == p1))
     return(0.0F);

    // calc. deltas
    int dx = p1.x - p0.x;
    int dy = p1.y - p0.y;
    int dsx = s.x - p0.x;
    int dsy = s.y - p0.y;

    // if both deltas are zero 
    if((dx == 0) && (dy == 0))
    {
     // shortest distance is distance is to either vertex
     float l = (float)(dsx * dsx + dsy * dsy);
     t = p0;
     return(l);
    }

    // calc. point, p, on line that is closest to sourcePosition
    // p = p0 + l * (p1 - p0)
    float l = (float)(dsx * dx + dsy * dy) / (float)(dx * dx + dy * dy);

    // if intersection is beyond p0
    if(l <= 0.0F){

     // shortest distance is to p0
     l = (float)(dsx * dsx + dsy * dsy);
     t = p0;

    // else if intersection is beyond p1
    } else if(l >= 1.0F){

     // shortest distance is to p1
     dsx = s.x - p1.x;
     dsy = s.y - p1.y;
     l = (float)(dsx * dsx + dsy * dsy);
     t = p1;

    // if intersection is between line end points
    } else {
     // calc. perpendicular distance
     float ldx = (float)dsx - l * (float)dx;
     float ldy = (float)dsy - l * (float)dy;
     t.x = p0.x + RoundValue(l * (float)dx);
     t.y = p0.y + RoundValue(l * (float)dy);
     l = ldx * ldx + ldy * ldy;
    }

    return(l);
}

// Calculates the bounding rectangle around a set of points
// Returns TRUE if the rectangle is not empty (has area), FALSE otherwise
// Opposite of CreateRectPoints()
BOOL CalcBoundingRectangle(const CPoint *pVertexList, const int nVertexTotal, CRect &rect)
{
    rect.SetRectEmpty();
    if(nVertexTotal < 2)
    {
     ASSERT(FALSE); // Must have at least 2 points
     return FALSE;
    }

    // First point, set rectangle (no area at this point)
    rect.left = rect.right = pVertexList[0].x;
    rect.top = rect.bottom = pVertexList[0].y;

    // Increst rectangle by looking at other points
    for(int n = 1; n < nVertexTotal; n++)
    {
     if(rect.left > pVertexList[n].x) // Take minimum
      rect.left = pVertexList[n].x;

     if(rect.right < pVertexList[n].x) // Take maximum
      rect.right = pVertexList[n].x;

     if(rect.top > pVertexList[n].y)  // Take minimum
      rect.top = pVertexList[n].y;

     if(rect.bottom < pVertexList[n].y) // Take maximum
      rect.bottom = pVertexList[n].y;
    }

    rect.NormalizeRect(); // Normalise rectangle
    return !(rect.IsRectEmpty());
}
Simon Hughes
+2  A: 

This catalogue of implementations of intersection algorithms from the Stony Brook Algorithm Repository might be useful. The repository is managed by Steven Skiena, author of a very well respected book on algorithms: The Algorithm Design Manual.

That's his own Amazon exec link by the way :)

MarkJ
That looks like it will do the trick and just a important I know what the algorithm is called and found more stuff on google, thanks.
RS Conley
Knowing the name of the algorithm is half the battle - maybe more.
MarkJ