Given an array of n integers, where one element appears more than n/2 times. We need to find that element in linear time and constant extra space.
YAAQ: Yet another arrays question.
Given an array of n integers, where one element appears more than n/2 times. We need to find that element in linear time and constant extra space.
YAAQ: Yet another arrays question.
My first thought (not sufficient) would be to:
But that would be O(n log n), as would any recursive solution.
If you can destructively modify the array (and various other conditions apply) you could do a pass replacing elements with their counts or something. Do you know anything else about the array, and are you allowed to modify it?
Edit Leaving my answer here for posterity, but I think Skeet's got it.
I have a sneaking suspicion it's something along the lines of (in C#)
// We don't need an array
public int FindMostFrequentElement(IEnumerable<int> sequence)
{
// Initial value is irrelevant if sequence is non-empty,
// but keeps compiler happy.
int best = 0;
int count = 0;
foreach (int element in sequence)
{
if (count == 0)
{
best = element;
count = 1;
}
else
{
// Vote current choice up or down
count += (best == element) ? 1 : -1;
}
}
return best;
}
It sounds unlikely to work, but it does. (Proof as a postscript file, courtesy of Boyer/Moore.)
How about: randomly select a small subset of K elements and look for duplicates (e.g. first 4, first 8, etc). If K == 4 then the probability of not getting at least 2 of the duplicates is 1/8. if K==8 then it goes to under 1%. If you find no duplicates repeat the process until you do. (assuming that the other elements are more randomly distributed, this would perform very poorly with, say, 49% of the array = "A", 51% of the array ="B").
e.g.:
findDuplicateCandidate:
select a fixed size subset.
return the most common element in that subset
if there is no element with more than 1 occurrence repeat.
if there is more than 1 element with more than 1 occurrence call findDuplicate and choose the element the 2 calls have in common
This is a constant order operation (if the data set isn't bad) so then do a linear scan of the array in order(N) to verify.
int findLeader(int n, int* x){
int leader = x[0], c = 1, i;
for(i=1; i<n; i++){
if(c == 0){
leader = x[i];
c = 1;
} else {
if(x[i] == leader) c++;
else c--;
}
}
if(c == 0) return NULL;
else {
c = 0;
for(i=0; i<n; i++){
if(x[i] == leader) c++;
}
if(c > n/2) return leader;
else return NULL;
}
}
I'm not the author of this code, but this will work for your problem. The first part looks for a potential leader, the second checks if it appears more than n/2 times in the array.
This is what I thought initially.
I made an attempt to keep the invariant "one element appears more than n/2 times", while reducing the problem set.
Lets start comparing a[i], a[i+1]. If they're equal we compare a[i+i], a[i+2]. If not, we remove both a[i], a[i+1] from the array. We repeat this until i>=(current size)/2. At this point we'll have 'THE' element occupying the first (current size)/2 positions. This would maintain the invariant.
The only caveat is that we assume that the array is in a linked list [for it to give a O(n) complexity.]
What say folks?
-bhupi