Give an algorithm to find a given element x (give the co-ordinates), in an n by n matrix where the rows and columns are monotonically increasing.
My thoughts: Reduce problem set size.
In the 1st column, find the largest element <= x. We know x must be in this row or after (lower). In the last column of the matrix, find the smallest element >= x. We know x must be in this row or before. Do the same thing with the first and last rows of the matrix. We have now defined a sub-matrix such that if x is in the matrix at all, it is in this sub-matrix. Now repeat the algo on this sub-matrix... Something along these lines.
[YAAQ: Yet another arrays question.]