The 'binary equivalent' of one tenth is one half, i.e instead of 1/10^1, it's 1/2^1.
Each digit represents a power of two. The digits behind the radix point are the same, it's just that they represent 1 over the power of two:
8 4 2 1 . 1/2 1/4 1/8 1/16
So for 10.1, you obviously need an '8' and a '2' to make the 10 portion. 1/2 (0.5) is too much, 1/4 ( 0.25 ) is too much, 1/8 (0.125) is too much. We need 1/16 (0.0625), which will leave us with 0.0375. 1/32 is 0.03125, so we can take that too. So far we have:
8 4 2 1 . 1/2 1/4 1/8 1/16 1/32
1 0 1 0 0 0 0 1 1
With an error of 0.00625. 1/64 (0.015625) and 1/128 (0.0078125) are both too much, 1/256 (0.00390625) will work:
8 4 2 1 . 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256
1 0 1 0 0 0 0 1 1 0 0 1
With an error of 0.00234375.
The .1 cannot be expressed exactly in binary ( just as 1/3 can't be expressed exactly in decimal ). Depending on where you put your radix, you eventually have to stop, probably round, and accept the error.