So, suppose you have a collection of items. Each item has an identifier which can be represented using a bitfield. As a simple example, suppose your collection is: 0110, 0111, 1001, 1011, 1110, 1111
So, you then want to implement a function, Remove(bool bitval, int position)
. For example, a call to Remove(0, 2)
would remove all items where index 2(i.e. 3rd bit) was 0. In this case, that would be 1001, only. Remove(1,1)
would remove 1110, 1111, 0111, and 0110. It is trivial to come up with an O(n) collection where this is possible (just use a linked list), with n being the number of items in the collection. In general the number of items to be removed is going to be O(n) (assuming a given bit has a ≥ c% chance of being 1 and a ≥ c% chance of being 0, where c is some constant > 0), so "better" algorithms which somehow are O(l), with l being the number of items being removed, are unexciting.
Is it possible to define a data structure where the average (or better yet, worst case) removal time is better than O(n)? A binary tree can do pretty well (just remove all left/right branches at the height m, where m is the index being tested), but I'm wondering if there is any way to do better (and quite honestly, I'm not sure how to removing all left or right branches at a particular height in an efficient manner). Alternatively, is there a proof that doing better is not possible?
Edit: I'm not sure exactly what I'm expecting in terms of efficiency (sorry Arno), but a basic explanation of it's possible application is thus: Suppose we are working with a binary decision tree. Such a tree could be used for a game tree or a puzzle solver or whatever. Further suppose the tree is small enough that we can fit all of the leaf nodes into memory. Each such node is basically just a bitfield listing all of the decisions. Now, if we want to prune arbitrary decisions from this tree, one method would be to just jump to the height where a particular decision is made and prune the left or right side of every node (left meaning one decision, right meaning the other). Normally in a decision tree you only want to prune subtree at a time (since the parent of that subtree is different from the parent of other subtrees and thus the decision which should be pruned in one subtree should not be pruned from others), but in some types of situations this may not be the case. Further, you normally only want to prune everything below a particular node, but in this case you'll be leaving some stuff below the node but also pruning below other nodes in the tree.
Anyhow, this is somewhat of a question based on curiousity; I'm not sure it's practical to use any results, but am interested in what people have to say.
Edit: Thinking about it further, I think the tree method is actually O(n / logn), assuming it's reasonably dense. Proof: Suppose you have a binary tree with n items. It's height is log(n). Removing half the bottom will require n/2 removals. Removing the half the row above will require n/4. The sum of operations for each row is n-1. So the average number of removals is n-1 / log(n).