Hi,
I'm a newbie to Haskell, and I'm trying to write an elegant function to merge an arbitrary number of sorted lists into a single sorted list... Can anyone provide an elegant and efficient reference implementation?
Thanks!
Hi,
I'm a newbie to Haskell, and I'm trying to write an elegant function to merge an arbitrary number of sorted lists into a single sorted list... Can anyone provide an elegant and efficient reference implementation?
Thanks!
Something like this should work:
merge2 pred xs [] = xs
merge2 pred [] ys = ys
merge2 pred (x:xs) (y:ys) =
case pred x y of
True -> x: merge2 pred xs (y:ys)
False -> y: merge2 pred (x:xs) ys
merge pred [] = []
merge pred (x:[]) = x
merge pred (x:xs) = merge2 pred x (merge pred xs)
Here, the function merge2 merges 2 lists. The function merge merges a list of lists. The pred is predicate you use for sorting.
Example:
merge (<) [[1, 3, 9], [2, 3, 4], [7, 11, 15, 22]]
should return
[1,2,3,3,4,7,9,11,15,22]
Since I like taking advantage of infix operators and higher-order functions where it makes sense to, I would write
infixr 5 @@
(@@) :: (Ord a) => [a] -> [a] -> [a]
-- if one side is empty, the merges can only possibly go one way
[] @@ ys = ys
xs @@ [] = xs
-- otherwise, take the smaller of the two heads out, and continue with the rest
(x:xs) @@ (y:ys) = case x `compare` y of
LT -> x : xs @@ (y:ys)
EQ -> x : xs @@ ys
GT -> y : (x:xs) @@ ys
-- a n-way merge can be implemented by a repeated 2-way merge
merge :: (Ord a) => [[a]] -> [a]
merge = foldr1 (@@)
Here, xs @@ ys
merges two lists by their natural ordering (and drops duplicates), while merge [xs, ys, zs..]
merges any number of lists.
This leads to the very natural definition of the Hamming numbers:
hamming :: (Num a, Ord a) => [a]
hamming = 1 : map (2*) hamming @@ map (3*) hamming @@ map (5*) hamming
hamming = 1 : merge [map (n*) hamming | n <- [2, 3, 5]] -- alternative
-- this generates, in order, all numbers of the form 2^i * 3^j * 5^k
-- hamming = [1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36,40,45,48,50,..]
Stealing yairchu's unimplemented idea:
{-# LANGUAGE ViewPatterns #-}
import qualified Data.Map as M
import Data.List (foldl', unfoldr)
import Data.Maybe (mapMaybe)
-- merge any number of ordered lists, dropping duplicate elements
merge :: (Ord a) => [[a]] -> [a]
-- create a map of {n: [tails of lists starting with n]}; then
-- repeatedly take the least n and re-insert the tails
merge = unfoldr ((=<<) step . M.minViewWithKey) . foldl' add M.empty where
add m (x:xs) = M.insertWith' (++) x [xs] m; add m _ = m
step ((x, xss), m) = Just (x, foldl' add m xss)
-- merge any number of ordered lists, preserving duplicate elements
mergeDup :: (Ord a) => [[a]] -> [a]
-- create a map of {(n, i): tail of list number i (which starts with n)}; then
-- repeatedly take the least n and re-insert the tail
-- the index i <- [0..] is used to prevent map from losing duplicates
mergeDup = unfoldr step . M.fromList . mapMaybe swap . zip [0..] where
swap (n, (x:xs)) = Just ((x, n), xs); swap _ = Nothing
step (M.minViewWithKey -> Just (((x, n), xs), m)) =
Just (x, case xs of y:ys -> M.insert (y, n) ys m; _ -> m)
step _ = Nothing
where merge
, like my original, eliminates duplicates, while mergeDup
preserves them (like Igor's answer).
if efficiency wasn't a concern I'd go with
merge = sort . concat
otherwise:
merge :: Ord a => [[a]] -> [a]
merge [] = []
merge lists =
minVal : merge nextLists
where
heads = map head lists
(minVal, minIdx) = minimum $ zip heads [0..]
(pre, ((_:nextOfMin):post)) = splitAt minIdx lists
nextLists =
if null nextOfMin
then pre ++ post
else pre ++ nextOfMin : post
note however that this implementation always linearly searches for the minimum (while for a large number of list one may wish to maintain a heap etc.)
Unlike the other posts, I would have merge :: [a] -> [a] -> [a]
type SortedList a = [a]
merge :: (Ord a) => SortedList a -> SortedList a -> SortedList a
merge [] ys = ys
merge xs [] = xs
merge (x:xs) (y:ys)
| x < y = x : merge xs (y : ys)
| otherwise = y : merge (x : xs) ys
mergeAll :: (Ord a) => [SortedList a] -> SortedList a
mergeAll = foldr merge []