Which one is faster? Why?
var messages:Array = [.....]
// 1 - for
var len:int = messages.length;
for (var i:int = 0; i < len; i++) {
var o:Object = messages[i];
// ...
}
// 2 - foreach
for each (var o:Object in messages) {
// ...
}
Which one is faster? Why?
var messages:Array = [.....]
// 1 - for
var len:int = messages.length;
for (var i:int = 0; i < len; i++) {
var o:Object = messages[i];
// ...
}
// 2 - foreach
for each (var o:Object in messages) {
// ...
}
for would be faster for arrays...but depending on the situation it can be foreach that is best...see this .net benchmark test.
Personally, I'd use either until I got to the point where it became necessary for me to optimize the code. Premature optimization is wasteful :-)
sorry to prove you guys wrong, but for each is faster. even a lot. except, if you don't want to access the array values, but a) this does not make sense and b) this is not the case here.
as a result of this, i made a detailed post on my super new blog ... :D
From where I'm sitting, regular for
loops are moderately faster than for each
loops in the minimal case. Also, as with AS2 days, decrementing your way through a for
loop generally provides a very minor improvement.
But really, any slight difference here will be dwarfed by the requirements of what you actually do inside the loop. You can find operations that will work faster or slower in either case. The real answer is that neither kind of loop can be meaningfully said to be faster than the other - you must profile your code as it appears in your application.
Sample code:
var size:Number = 10000000;
var arr:Array = [];
for (var i:int=0; i<size; i++) { arr[i] = i; }
var time:Number, o:Object;
// for()
time = getTimer();
for (i=0; i<size; i++) { arr[i]; }
trace("for test: "+(getTimer()-time)+"ms");
// for() reversed
time = getTimer();
for (i=size-1; i>=0; i--) { arr[i]; }
trace("for reversed test: "+(getTimer()-time)+"ms");
// for..in
time = getTimer();
for each(o in arr) { o; }
trace("for each test: "+(getTimer()-time)+"ms");
Results:
for test: 124ms
for reversed test: 110ms
for each test: 261ms
Edit: To improve the comparison, I changed the inner loops so they do nothing but access the collection value.
Edit 2: Answers to oshyshko's comment:
for
loop now has an implicit type conversion. I left assignments out of my loops to avoid that.
Of course one could argue that it's okay to have an extra cast in the for
loop because "real code" would need it anyway, but to me that's just another way of saying "there's no general answer; which loop is faster depends on what you do inside your loop". Which is the answer I'm giving you. ;)When iterating over an array, for each loops are way faster in my tests.
var len:int = 1000000;
var i:int = 0;
var arr:Array = [];
while(i < len) {
arr[i] = i;
i++;
}
function forEachLoop():void {
var t:Number = getTimer();
var sum:Number = 0;
for each(var num:Number in arr) {
sum += num;
}
trace("forEachLoop :", (getTimer() - t));
}
function whileLoop():void {
var t:Number = getTimer();
var sum:Number = 0;
var i:int = 0;
while(i < len) {
sum += arr[i] as Number;
i++;
}
trace("whileLoop :", (getTimer() - t));
}
forEachLoop();
whileLoop();
This gives:
forEachLoop : 87 whileLoop : 967
Here, probably most of while loop time is spent casting the array item to a Number. However, I consider it a fair comparison, since that's what you get in the for each loop.
My guess is that this difference has to do with the fact that, as mentioned, the as operator is relatively expensive and array access is also relatively slow. With a for each loop, both operations are handled natively, I think, as opossed to performed in Actionscript.
Note, however, that if type conversion actually takes place, the for each version is much slower and the while version if noticeably faster (though, still, for each beats while):
To test, change array initialization to this:
while(i < len) {
arr[i] = i + "";
i++;
}
And now the results are:
forEachLoop : 328 whileLoop : 366
forEachLoop : 324 whileLoop : 369
Hi there,
I've had this discussion with a few collegues before, and we have all found different results for different scenarios. However, there was one test that I found quite eloquent for comparison's sake:
var array:Array=new Array();
for (var k:uint=0; k<1000000; k++) {
array.push(Math.random());
}
stage.addEventListener("mouseDown",foreachloop);
stage.addEventListener("mouseUp",forloop);
/////// Array /////
/* 49ms */
function foreachloop(e) {
var t1:uint=getTimer();
var tmp:Number=0;
var i:uint=0;
for each (var n:Number in array) {
i++;
tmp+=n;
}
trace("foreach", i, tmp, getTimer() - t1);
}
/***** 81ms ****/
function forloop(e) {
var t1:uint=getTimer();
var tmp:Number=0;
var l:uint=array.length;
for(var i:uint = 0; i < l; i++)
tmp += Number(array[i]);
trace("for", i, tmp, getTimer() - t1);
}
What I like about this tests is that you have a reference for both the key and value in each iteration of both loops (removing the key counter in the "for-each" loop is not that relevant). Also, it operates with Number, which is probably the most common loop that you will want to optimize that much. And most importantly, the winner is the "for-each", which is my favorite loop :P
Notes:
-Referencing the array in a local variable within the function of the "for-each" loop is irrelevant, but in the "for" loop you do get a speed bump (75ms instead of 105ms):
function forloop(e) {
var t1:uint=getTimer();
var tmp:Number=0;
var a:Array=array;
var l:uint=a.length;
for(var i:uint = 0; i < l; i++)
tmp += Number(a[i]);
trace("for", i, tmp, getTimer() - t1);
}
-If you run the same tests with the Vector class, the results are a bit confusing :S
Just an add-on:
a for each...in loop doesn't assure You, that the elements in the array/vector gets enumerated in the ORDER THEY ARE STORED in them. (except XMLs) This IS a vital difference, IMO.
"...Therefore, you should not write code that depends on a for- each-in or for-in loop’s enumeration order unless you are processing XML data..." C.Moock
(i hope not to break law stating this one phrase...)
Happy benchmarking.
Maybe in a array where all element are there and start at zero (0 to X) it would be faster to use a for loop. In all other case (sparse array) it can be a LOT faster to use for each. The reason is the usage of two data structure in the array: Hast table an Debse Array. Please read my Array analysis using Tamarin source: http://jpauclair.wordpress.com/2009/12/02/tamarin-part-i-as3-array/
The for loop will check at undefined index where the for each will skip those one jumping to next element in the HastTable