I've been reading up on Linux's "swappiness" tuneable, which controls how aggressive the kernel is about swapping applications' memory to disk when they're not being used. If you Google the term, you get a lot of pages like this discussing the pros and cons. In a nutshell, the argument goes like this:
If your swappiness is too low, inactive applications will hog all the system memory that other programs might want to use.
If your swappiness is too high, when you wake up those inactive applications, there's going to be a big delay as their state is read back off the disk.
This argument doesn't make sense to me. If I have an inactive application that's using a ton of memory, why doesn't the kernel page its memory to disk AND leave another copy of that data in-memory? This seems to give the best of both worlds: if another application needs that memory, it can immediately claim the physical RAM and start writing to it, since another copy of it is on disk and can be swapped back in when the inactive application is woken up. And when the original app wakes up, any of its pages that are still in RAM can be used as-is, without having to pull them off the disk.
Or am I missing something?