For rectangles that are aligned with the axes, you only need two points (four numbers) to identify the rectangle - conventionally, bottom-left and top-right corners. To establish whether a given point (Xtest, Ytest) overlaps with a rectangle (XBL, YBL, XTR, YTR) by testing both:
- Xtest >= XBL && Xtest <= XTR
- Ytest >= YBL && Ytest <= YTR
Clearly, for a large enough set of points to test, this could be fairly time consuming. The question, then, is how to optimize the testing.
Clearly, one optimization is to establish the minimum and maximum X and Y values for the box surrounding all the rectangles (the bounding box): a swift test on this shows whether there is any need to look further.
- Xtest >= Xmin && Xtest <= Xmax
- Ytest >= Ymin && Ytest <= Ymax
Depending on how much of the total surface area is covered with rectangles, you might be able to find non-overlapping sub-areas that contain rectangles, and you could then avoid searching those sub-areas that cannot contain a rectangle overlapping the point, again saving comparisons during the search at the cost of pre-computation of suitable data structures. If the set of rectangles is sparse enough, there may be no overlapping, in which case this degenerates into the brute-force search. Equally, if the set of rectangles is so dense that there are no sub-ranges in the bounding box that can be split up without breaking rectangles.
However, you could also arbitrarily break up the bounding area into, say, quarters (half in each direction). You would then use a list of boxes which would include more boxes than in the original set (two or four boxes for each box that overlapped one of the arbitrary boundaries). The advantage of this is that you could then eliminate three of the four quarters from the search, reducing the amount of searching to be done in total - at the expense of auxilliary storage.
So, there are space-time trade-offs, as ever. And pre-computation versus search trade-offs. If you are unlucky, the pre-computation achieves nothing (for example, there are two boxes only, and they don't overlap on either axis). On the other hand, it could achieve considerable search-time benefit.