This is my implementation using a simple BFS. A Dijkstra would also work (substitute a stl::priority_queue
that sorts by descending costs for the stl::queue
) but would seriously be overkill.
The thing to notice here is that we are actually searching on a graph whose nodes do not exactly correspond to the cells in the given array. To get to that graph, I used a simple DFS-based floodfill (you could also use BFS, but DFS is slightly shorter for me). What that does is to find all connected and same character components and assign them to the same colour/node. Thus, after the floodfill we can find out what node each cell belongs to in the underlying graph by looking at the value of colour[row][col]. Then I just iterate over the cells and find out all the cells where adjacent cells do not have the same colour (i.e. are in different nodes). These therefore are the edges of our graph. I maintain a stl::set
of edges as I iterate over the cells to eliminate duplicate edges. After that it is a simple matter of building an adjacency list from the list of edges and we are ready for a bfs.
Code (in C++):
#include <queue>
#include <vector>
#include <iostream>
#include <string>
#include <set>
#include <cstring>
using namespace std;
#define SIZE 1001
vector<string> board;
int colour[SIZE][SIZE];
int dr[]={0,1,0,-1};
int dc[]={1,0,-1,0};
int min(int x,int y){ return (x<y)?x:y;}
int max(int x,int y){ return (x>y)?x:y;}
void dfs(int r, int c, int col, vector<string> &b){
if (colour[r][c]<0){
colour[r][c]=col;
for(int i=0;i<4;i++){
int nr=r+dr[i],nc=c+dc[i];
if (nr>=0 && nr<b.size() && nc>=0 && nc<b[0].size() && b[nr][nc]==b[r][c])
dfs(nr,nc,col,b);
}
}
}
int flood_fill(vector<string> &b){
memset(colour,-1,sizeof(colour));
int current_node=0;
for(int i=0;i<b.size();i++){
for(int j=0;j<b[0].size();j++){
if (colour[i][j]<0){
dfs(i,j,current_node,b);
current_node++;
}
}
}
return current_node;
}
vector<vector<int> > build_graph(vector<string> &b){
int total_nodes=flood_fill(b);
set<pair<int,int> > edge_list;
for(int r=0;r<b.size();r++){
for(int c=0;c<b[0].size();c++){
for(int i=0;i<4;i++){
int nr=r+dr[i],nc=c+dc[i];
if (nr>=0 && nr<b.size() && nc>=0 && nc<b[0].size() && colour[nr][nc]!=colour[r][c]){
int u=colour[r][c], v=colour[nr][nc];
if (u!=v) edge_list.insert(make_pair(min(u,v),max(u,v)));
}
}
}
}
vector<vector<int> > graph(total_nodes);
for(set<pair<int,int> >::iterator edge=edge_list.begin();edge!=edge_list.end();edge++){
int u=edge->first,v=edge->second;
graph[u].push_back(v);
graph[v].push_back(u);
}
return graph;
}
int bfs(vector<vector<int> > &G, int start, int end){
vector<int> cost(G.size(),-1);
queue<int> Q;
Q.push(start);
cost[start]=0;
while (!Q.empty()){
int node=Q.front();Q.pop();
vector<int> &adj=G[node];
for(int i=0;i<adj.size();i++){
if (cost[adj[i]]==-1){
cost[adj[i]]=cost[node]+1;
Q.push(adj[i]);
}
}
}
return cost[end];
}
int main(){
string line;
int rows,cols;
cin>>rows>>cols;
for(int r=0;r<rows;r++){
line="";
char ch;
for(int c=0;c<cols;c++){
cin>>ch;
line+=ch;
}
board.push_back(line);
}
vector<vector<int> > actual_graph=build_graph(board);
cout<<bfs(actual_graph,colour[0][0],colour[rows-1][cols-1])<<"\n";
}
This is just a quick hack, lots of improvements can be made. But I think it is pretty close to optimal in terms of runtime complexity, and should run fast enough for boards of size of several thousand (don't forget to change the #define
of SIZE
). Also, I only tested it with the one case you have provided. So, as Knuth said, "Beware of bugs in the above code; I have only proved it correct, not tried it." :).