Is the reason you need a single table that you want to ensure that when the six parent tables reference a given instance of a child row that is guaranteed to be the same instance? This is the classic "multi-parent" problem. An example of where you might run into this is with addresses or phone numbers with multiple person/contact tables.
I can think of a couple of options:
Choice 1: A link table for each parent table. This would be the Hoyle architecture. So, something like:
Create Table MyTable(
id int not null Primary Key Clustered
, info1 varchar(50) null
, info2 varchar(50) null
, info3 varchar(50) null
)
Create Table LinkTable1(
MyTableId int not null
, ParentTable1Id int not null
, Constraint PK_LinkTable1 Primary Key Clustered( MyTableId, ParentTable1Id )
, Constraint FK_LinkTable1_ParentTable1
Foreign Key ( MyTableId )
References MyTable ( Id )
, Constraint FK_LinkTable1_ParentTable1
Foreign Key ( ParentTable1Id )
References ParentTable1 ( Id )
)
...
Create Table LinkTable2...LinkTable3
Choice 2. If you knew that you would never have more than say six tables and were willing to accept some denormalization and a fugly design, you could add six foreign keys to your main table. That avoids the problem of populating a bunch of link tables and ensures proper referential integrity. However, that design can quickly get out of hand if the number of parents grows.
If you are content with your existing design, then with respect to the field size, I would use the full table name. Frankly, the difference in performance between a char(3) and a varchar(50) or even varchar(128) will be negligible for the amount of data you are likely to put in the table. If you really thought you were going to have millions of rows, then I would strongly consider the option of linking tables.
If you wanted to stay with your design and wanted the maximum performance, then I would use a tinyint with a foreign key to a table that contained the list of the six tables with a tinyint primary key. That prevents the number from being "magic" and ensures that you narrow down the list of parent tables. Of course, it still does not prevent orphaned records. In this design, you have to use triggers to do that.