There are two methods of measuring performance: using code instrumentation and using sampling.
The commercial profilers (Hi-Prof, Rational Quantify, AQTime) I used in the past used code instrumentation (some of them could also use sampling) and in my experience, this gives the best, most detailed result. Especially Rational Quantity allow you to zoom in on results, focus on sub trees, remove complete call trees to simulate an improvement, ...
The downside of these instrumenting profilers is that they:
- tend to be slow (your code runs about 10 times slower)
- take quite some time to instrument your application
- don't always correctly handle exceptions in the application (in C++)
- can be hard to set up if you have to disable the instrumentation of DLL's (we had to disable instrumentation for Oracle DLL's)
The instrumentation also sometimes skews the times reported for low-level functions like memory allocations, critical sections, ...
The free profilers (Very Sleepy, Luke Stackwalker) that I use use sampling, which means that it is much easier to do a quick performance test and see where the problem lies. These free profilers don't have the full functionality of the commercial profilers (although I submitted the "focus on subtree" functionality for Very Sleepy myself), but since they are fast, they can be very useful.
At this time, my personal favorite is Very Sleepy, with Luke StackWalker coming second.
In both cases (instrumenting and sampling), my experience is that:
- It is very difficult to compare the results of profilers over different releases of your application. If you have a performance problem in your release 2.0, profile your release 2.0 and try to improve it, rather than looking for the exact reason why 2.0 is slower than 1.0.
- You must never compare the profiling results with the timing (real time, cpu time) results of an application that is run outside the profiler. If your application consumes 5 seconds CPU time outside the profiler, and when run in the profiler the profiler reports that it consumes 10 seconds, there's nothing wrong. Don't think that your application actually takes 10 seconds.
- That's why you must consistently check results in the same environment. Consistently compare results of your application when run outside the profiler, or when run inside the profiler. Don't mix the results.
- Also use a consistent environment and system. If you get a faster PC, your application could still run slower, e.g. because the screen is larger and more needs to be updated on screen. If moving to a new PC, retest the last (one or two) releases of your application on the new PC so you get an idea on how times scale to the new PC.
- This also means: use fixed data sets and check your improvements on these datasets. It could be that an improvement in your application improves the performance of dataset X, but makes it slower with dataset Y. In some cases this may be acceptible.
- Discuss with the testing team what results you want to obtain beforehand (see Oded's answer on my own question http://stackoverflow.com/questions/2341034).
- Realize that a faster application can still use more CPU time than a slower application, if the faster one uses multi-threading and the slower one doesn't. Discuss (as said before) with the testing time what needs to be measured and what doesn't (in the multi-threading case: real time instead of CPU time).
- Realize that many small improvements may lead to one big improvement. If you find 10 parts in your application that each take 3% of the time and you can reduce it to 1%, your application will be 20% faster.