"In terms of performance and reliability which option is best"
On a lossy layer, performance and reliability are almost a straight trade-off against each other, and greater experts than us have put years of work into finding sweet spots, and techniques which beat the straight trade-off and improve both at once.
You have two basic options:
1) Use stream sockets (TCP). Any "Messages" that your application knows about are defined at the application layer rather than at the sockets. For example, you might consider an HTTP request to be a message, and the response to be another in the opposite direction. You should see your job as being to keep the output buffer as full as possible, and the input buffer as empty as possible, at all times. Reliability has pretty much nothing to do with message length, and for a fixed size of data performance is mostly determined by the number of request-response round-trips performed rather than the number of individual writes on the socket. Obviously if you're sending one byte at a time with TCP_NODELAY then you'd lose performance, but that's pretty extreme.
2) Use datagrams (UDP). "Messages" are socket-layer entities. Performance is potentially better than TCP, but you have to invent your own system for reliability, and potentially this will hammer performance by requiring data to be re-sent. TCP has the same issue, but greater minds, etc. Datagram length can interact very awkwardly with both performance and reliability, hence the MTU discovery mentioned by Duck. If you send a large packet and it's fragmented, then if any fragment goes astray then your message won't arrive. There's a size N, where if you send N-size datagrams they won't fragment, but if you send N+1-size datagrams they will. Hence that +1 doubles the number of failed messages. You don't know N until you know the network route (and maybe not even then). So it's basically impossible to say at compile time what sizes will give good performance: even if you measure it, it'll be different for different users. If you want to optimise, there's no alternative to knowing your stuff.
UDP is also more work than TCP if you need reliability, which is built in to TCP. Potentially UDP has big payoffs, but should probably be thought of as the assembler programming of sockets.
There's also (3): use a protocol for improved UDP reliability, such as RUDP. This isn't part of Berkeley-style sockets APIs, so you'll need a library to help.