Take the longest of the segments about zero (or the whole graph, if zero is not in the range) - for example, if you have something on the range [-5, 1], take [-5,0].
Figure out approximately how long this segment will be, in ticks. This is just dividing the length by the width of a tick. So suppose the method says that we can put 11 ticks in from -5 to 0. This is our upper bound. For the shorter side, we'll just mirror the result on the longer side.
Now try to put in as many (up to 11) ticks in, such that the marker for each tick in the form i*10*10^n, i*5*10^n, i*2*10^n, where n is an integer, and i is the index of the tick. Now it's an optimization problem - we want to maximize the number of ticks we can put in, while at the same time minimizing the distance between the last tick and the end of the result. So assign a score for getting as many ticks as we can, less than our upper bound, and assign a score to getting the last tick close to n - you'll have to experiment here.
In the above example, try n = 1. We get 1 tick (at i=0). n = 2 gives us 1 tick, and we're further from the lower bound, so we know that we have to go the other way. n = 0 gives us 6 ticks, at each integer point point. n = -1 gives us 12 ticks (0, -0.5, ..., -5.0). n = -2 gives us 24 ticks, and so on. The scoring algorithm will give them each a score - higher means a better method.
Do this again for the i * 5 * 10^n, and i*2*10^n, and take the one with the best score.
(as an example scoring algorithm, say that the score is the distance to the last tick times the maximum number of ticks minus the number needed. This will likely be bad, but it'll serve as a decent starting point).