You are going to be looking at the upper 8 or 9 bits. That's where the sign and mantissa of a floating point value are. Values of 0x00 0x80 and 0xFF here are pretty uncommon for valid float data.
In particular if the upper 9 bits are all 0 then this likely to be a valid floating point value only if all 32 bits are 0. Another way to say this is that if the exponent is 0, the mantissa should also be zero. If the upper bit is 1 and the next 8 bits are 0, this is legal, but also not likely to be valid. It represents -0.0 which is a legal floating point value, but a meaningless one.
To put this into numerical terms. if the upper byte is 0x00 (or 0x80), then the value has a magnitude of at most 2.35e-38. Plank's constant is 6.62e-34 m2kg/s that's 4 orders of magnitude larger. The estimated diameter of a proton is much much larger than that (estimated at 1.6e−15 meters). The smallest non-zero value for audio data is about 2.3e-10. You aren't likely to see floating point values are are legitimate measurements of anything real that are smaller than 2.35e-38 but not zero.
Going the other direction if the upper byte is 0xFF then this value is either Infinite, a NaN or larger in magnitude than 3.4e+38. The age of the universe is estimated to be 1.3e+10 years (1.3e+25 femtoseconds). The observable universe has roughly e+23 stars, Avagadro's number is 6.02e+23. Once again float values larger than e+38 rarely show up in legitimate measurements.
This is not to say that the FPU can't load or produce such values, and you will certainly see them in intermediate values of calculations if you are working with modern FPUs. A modern FPU will load a floating point value that has a exponent of 0 but the other bits are not 0. These are called denormalized values. This is why you are seeing small positive integers show up as float values in the range of e-42 even though the normal range of a float only goes down to e-38
An exponent of all 1s represents Infinity. You probably won't find infinities in your data, but you would know better than I. -Infinity is 0xFF800000, +Infinity is 0x7F800000, any value other than 0 in the mantissa of Infinity is malformed. malformed infinities are used as NaNs.
Loading a NaN into a float register can cause it to throw an exception, so you want to use integer math to do your guessing about whether your data is float or int until you are fairly certain it is int.