views:

342

answers:

2

According to Marcin Ciura's Optimal (best known) sequence of increments for shell sort algorithm, the best sequence for shellsort is 1, 4, 10, 23, 57, 132, 301, 701..., but how can I generate such a sequence? In Marcin Ciura's paper, he said:

Both Knuth’s and Hibbard’s sequences are relatively bad, because they are defined by simple linear recurrences.

but most algorithm books I found tend to use Knuth’s sequence: k = 3k + 1, because it's easy to generate. What's your way of generating a shellsort sequence?

+4  A: 

Ciura's paper generates the sequence empirically -- that is, he tried a bunch of combinations and this was the one that worked the best. Generating an optimal shellsort sequence has proven to be tricky, and the problem has so far been resistant to analysis.

The best known increment is Sedgewick's, which you can read about here (see p. 7).

John Feminella
A: 

If your data set has a definite upper bound in size, then you can hardcode the step sequence. You should probably only worry about generality if your data set is likely to grow without an upper bound.

The sequence shown seems to grow roughly as an exponential series, albeit with quirks. There seems to be a majority of prime numbers, but with non-primes in the mix as well. I don't see an obvious generation formula.

A valid question, assuming you must deal with arbitrarily large sets, is whether you need to emphasise worst-case performance, average-case performance, or almost-sorted performance. If the latter, you may find that a plain insertion sort using a binary search for the insertion step might be better than a shellsort. If you need good worst-case performance, then Sedgewick's sequence appears to be favoured. The sequence you mention is optimised for average-case performance, where the number of comparisons outweighs the number of moves.

Chromatix