i don't think they'll make much of a different, but since you're not actually needing to resize the image, try using the overload of DrawImage that doesn't (attempt) to resize:
DrawImage(bitmap,0,0);
Like i said, i doubt it will make any difference, because i'm sure that DrawImage checks the Width and Height of the bitmap, and if there's no resizing needed, just calls this overload. (i would hope it doesn't bother going through all 12 million pixels performing no actual work).
Update: My ponderings are wrong. i had since found out, but guys comment reminded me of my old answer: you want to specify the destination size; even though it matches the source size:
DrawImage(bitmap, 0, 0, bitmap.GetWidth, bitmap.GetHeight);
The reason is because of dpi differences between the dpi of bitmap
and the dpi of the destination. GDI+ will perform scaling to get the image to come out the right "size" (i.e. in inches)
What i've learned on my own since last October is that you really want to draw a "cached" version of your bitmap. There is a CachedBitmap
class in GDI+. There are some tricks to using it. But in there end i have a function bit of (Delphi) code that does it.
The caveat is that the CachedBitmap
can become invalid - meaning it can't be used to draw. This happens if the user changes resolutions or color depths (e.g. Remote Desktop). In that case the DrawImage
will fail, and you have to re-created the CachedBitmap
:
class procedure TGDIPlusHelper.DrawCachedBitmap(image: TGPImage;
var cachedBitmap: TGPCachedBitmap;
Graphics: TGPGraphics; x, y: Integer; width, height: Integer);
var
b: TGPBitmap;
begin
if (image = nil) then
begin
//i've chosen to not throw exceptions during paint code - it gets very nasty
Exit;
end;
if (graphics = nil) then
begin
//i've chosen to not throw exceptions during paint code - it gets very nasty
Exit;
end;
//Check if we have to invalidate the cached image because of size mismatch
//i.e. if the user has "zoomed" the UI
if (CachedBitmap <> nil) then
begin
if (CachedBitmap.BitmapWidth <> width) or (CachedBitmap.BitmapHeight <> height) then
FreeAndNil(CachedBitmap); //nil'ing it will force it to be re-created down below
end;
//Check if we need to create the "cached" version of the bitmap
if CachedBitmap = nil then
begin
b := TGDIPlusHelper.ResizeImage(image, width, height);
try
CachedBitmap := TGPCachedBitmap.Create(b, graphics);
finally
b.Free;
end;
end;
if (graphics.DrawCachedBitmap(cachedBitmap, x, y) <> Ok) then
begin
//The calls to DrawCachedBitmap failed
//The API is telling us we have to recreate the cached bitmap
FreeAndNil(cachedBitmap);
b := TGDIPlusHelper.ResizeImage(image, width, height);
try
CachedBitmap := TGPCachedBitmap.Create(b, graphics);
finally
b.Free;
end;
graphics.DrawCachedBitmap(cachedBitmap, x, y);
end;
end;
The cachedBitmap
is passed in by reference. The first call to DrawCachedBitmap
it cached version will be created. You then pass it in subsequent calls, e.g.:
Image imgPrintInvoice = new Image.FromFile("printer.png");
CachedBitmap imgPrintInvoiceCached = null;
...
int glyphSize = 16 * (GetCurrentDpi() / 96);
DrawCachedBitmap(imgPrintInvoice , ref imgPrintInvoiceCached , graphics,
0, 0, glyphSize, glyphSize);
i use the routine to draw glyphs on buttons, taking into account the current DPI. The same could have been used by the Internet Explorer team to draw images when the user is running high dpi (ie is very slow drawing zoomed images, because they use GDI+).