Hi All
I am working on representation of the chess board, and I am planning to store it in 32 bytes array, where each byte will be used to store two pieces. (That way only 4 bits are needed per piece)
Doing it in that way, results in a overhead for accessing particular index of the board. Do you think that, this code can be optimised or completely different method of accessing indexes can be used?
c++
char getPosition(unsigned char* c, int index){
//moving pointer
c+=(index>>1);
//odd number
if (index & 1){
//taking right part
return *c & 0xF;
}else
{
//taking left part
return *c>>4;
}
}
void setValue(unsigned char* board, char value, int index){
//moving pointer
board+=(index>>1);
//odd number
if (index & 1){
//replace right part
//save left value only 4 bits
*board = (*board & 0xF0) + value;
}else
{
//replacing left part
*board = (*board & 0xF) + (value<<4);
}
}
int main() {
char* c = (char*)malloc(32);
for (int i = 0; i < 64 ; i++){
setValue((unsigned char*)c, i % 8,i);
}
for (int i = 0; i < 64 ; i++){
cout<<(int)getPosition((unsigned char*)c, i)<<" ";
if (((i+1) % 8 == 0) && (i > 0)){
cout<<endl;
}
}
return 0;
}
I am equally interested in your opinions regarding chess representations, and optimisation of the method above, as a stand alone problem.
Thanks a lot
EDIT
Thanks for your replies. A while ago I created checkers game, where I was using 64 bytes board representation. This time I am trying some different methods, just to see what I like. Memory is not such a big problem. Bit-boards is definitely on my list to try. Thanks