I am looking to use Berkeley DB to create a simple key-value storage system. The keys will be SHA-1 hashes, so they are in 160-bit address space. I have a simple server working, that was easy enough thanks to the fairly well written documentation from Berkeley DB website. However, I have some questions about how best to set up such a system, to get good performance and flexibility. Hopefully, someone has had more experience with Berkeley DB and can help me.
The simplest setup is a single process, with a single thread, handling a single DB; inserts and gets are performed on this one DB, using transactions.
Alternative 1: single process, multiple threads, single DB; inserts and gets are performed on this DB, by all the threads in the process.
- Does using multiple threads provide much performance improvements? There is one single DB, and therefore it's on one disk, and therefore I am guessing I won't get too much boost. But if Berkeley DB caches a lot of stuff in memory, then perhaps one thread will be able to run and answer from cache while another has blocked waiting for disk? I am using GNU Pth, user level cooperative threading. I am not familiar with the details of Pth, so I am also not sure if with Pth you can have a userlevel thread run while another userlevel thread has blocked.
Alternative 2: single process, one or multiple threads, multiple DBs where each DB covers a fraction of the 160-bit address space for keys.
- I see a few advantages in having multiple DBs: we can put them on different disks, less contention, easier to move/partition DBs onto different physical hosts if we want to do that. Does anyone have experience with this setup and see significant benefits?
Alternative 3: multiple processes, each with one thread, each handles a DB that covers a fraction of the 160-bit address space for keys.
- This has the advantages of using multiple DBs, but we are using multiple processes. Is this better than the second alternative? I suspect using processes rather than user-level threads to get parallelism will get you better SMP caching behaviors (less invalidates, etc), but will I get killed with all the process overheads and context switches?
I would love to hear if someone has tried the options, and have seen positive or negative results.
Thanks.