If you are allowed to ignore case, which I assume, then make all the words in your dictionary and all the search terms the same case before anything else. Upper or lower case makes no difference. If you have some words that are case sensitive and others that are not, break the words into two groups and search each separately.
You are only matching words, so you can break the dictionary into an array of strings. Since you are only doing an exact match against a known length, break the word array into a separate array for each word length. So byLength[3] is the array off all words with length 3. Each word array should be sorted.
Now you have an array of words and a word with potential wild cards to find. Depending on wether and where the wildcards are, there are a few approaches.
If the search term has no wild cards, then do a binary search in your sorted array. You could do a hash at this point, which would be faster but not much. If the vast majority of your search terms have no wildcards, then consider a hash table or an associative array keyed by hash.
If the search term has wildcards after some literal characters, then do a binary search in the sorted array to find an upper and lower bound, then do a linear search in that bound. If the wildcards are all trailing then finding a non empty range is sufficient.
If the search term starts with wild cards, then the sorted array is no help and you would need to do a linear search unless you keep a copy of the array sorted by backwards strings. If you make such an array, then choose it any time there are more trailing than leading literals. If you do not allow leading wildcards then there is no need.
If the search term both starts and ends with wildcards, then you are stuck with a linear search within the words with equal length.
So an array of arrays of strings. Each array of strings is sorted, and contains strings of equal length. Optionally duplicate the whole structure with the sorting based on backwards strings for the case of leading wildcards.
The overall space is one or two pointers per word, plus the words. You should be able to store all the words in a single buffer if your language permits. Of course, if your language does not permit, grep is probably faster anyway. For a million words, that is 4-16MB for the arrays and similar for the actual words.
For a search term with no wildcards, performance would be very good. With wildcards, there will occasionally be linear searches across large groups of words. With the breakdown by length and a single leading character, you should never need to search more than a few percent of the total dictionary even in the worst case. Comparing only whole words of known length will always be faster than generic string matching.